diff options
Diffstat (limited to '')
-rw-r--r-- | src/ringct/rctSigs.cpp | 533 |
1 files changed, 533 insertions, 0 deletions
diff --git a/src/ringct/rctSigs.cpp b/src/ringct/rctSigs.cpp new file mode 100644 index 000000000..d26678165 --- /dev/null +++ b/src/ringct/rctSigs.cpp @@ -0,0 +1,533 @@ +// Copyright (c) 2016, Monero Research Labs +// +// Author: Shen Noether <shen.noether@gmx.com> +// +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without modification, are +// permitted provided that the following conditions are met: +// +// 1. Redistributions of source code must retain the above copyright notice, this list of +// conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright notice, this list +// of conditions and the following disclaimer in the documentation and/or other +// materials provided with the distribution. +// +// 3. Neither the name of the copyright holder nor the names of its contributors may be +// used to endorse or promote products derived from this software without specific +// prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY +// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL +// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF +// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "rctSigs.h" +using namespace crypto; +using namespace std; + +namespace rct { + + //Schnorr Non-linkable + //Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2 + //Ver Verifies that signer knows an "x" such that xG = one of P1 or P2 + //These are called in the below ASNL sig generation + + void GenSchnorrNonLinkable(key & L1, key & s1, key & s2, const key & x, const key & P1, const key & P2, int index) { + key c1, c2, L2; + key a = skGen(); + if (index == 0) { + scalarmultBase(L1, a); + hash_to_scalar(c2, L1); + skGen(s2); + addKeys2(L2, s2, c2, P2); + hash_to_scalar(c1, L2); + sc_mulsub(s1.bytes, x.bytes, c1.bytes, a.bytes); + } + if (index == 1) { + scalarmultBase(L2, a); + skGen(s1); + hash_to_scalar(c1, L2); + addKeys2(L1, s1, c1, P1); + hash_to_scalar(c2, L1); + sc_mulsub(s2.bytes, x.bytes, c2.bytes, a.bytes); + } + } + + //Schnorr Non-linkable + //Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2 + //Ver Verifies that signer knows an "x" such that xG = one of P1 or P2 + //These are called in the below ASNL sig generation + bool VerSchnorrNonLinkable(const key & P1, const key & P2, const key & L1, const key & s1, const key & s2) { + key c2, L2, c1, L1p; + hash_to_scalar(c2, L1); + addKeys2(L2, s2, c2, P2); + hash_to_scalar(c1, L2); + addKeys2(L1p, s1, c1, P1); + + return equalKeys(L1, L1p); + } + + //Aggregate Schnorr Non-linkable Ring Signature (ASNL) + // c.f. http://eprint.iacr.org/2015/1098 section 5. + // These are used in range proofs (alternatively Borromean could be used) + // Gen gives a signature which proves the signer knows, for each i, + // an x[i] such that x[i]G = one of P1[i] or P2[i] + // Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i + asnlSig GenASNL(key64 x, key64 P1, key64 P2, bits indices) { + DP("Generating Aggregate Schnorr Non-linkable Ring Signature\n"); + key64 s1; + int j = 0; + asnlSig rv; + rv.s = zero(); + for (j = 0; j < ATOMS; j++) { + //void GenSchnorrNonLinkable(Bytes L1, Bytes s1, Bytes s2, const Bytes x, const Bytes P1,const Bytes P2, int index) { + GenSchnorrNonLinkable(rv.L1[j], s1[j], rv.s2[j], x[j], P1[j], P2[j], (int)indices[j]); + sc_add(rv.s.bytes, rv.s.bytes, s1[j].bytes); + } + return rv; + } + + //Aggregate Schnorr Non-linkable Ring Signature (ASNL) + // c.f. http://eprint.iacr.org/2015/1098 section 5. + // These are used in range proofs (alternatively Borromean could be used) + // Gen gives a signature which proves the signer knows, for each i, + // an x[i] such that x[i]G = one of P1[i] or P2[i] + // Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i + bool VerASNL(key64 P1, key64 P2, asnlSig &as) { + DP("Verifying Aggregate Schnorr Non-linkable Ring Signature\n"); + key LHS = identity(); + key RHS = scalarmultBase(as.s); + key c2, L2, c1; + int j = 0; + for (j = 0; j < ATOMS; j++) { + hash_to_scalar(c2, as.L1[j]); + addKeys2(L2, as.s2[j], c2, P2[j]); + addKeys(LHS, LHS, as.L1[j]); + hash_to_scalar(c1, L2); + addKeys(RHS, RHS, scalarmultKey(P1[j], c1)); + } + key cc; + sc_sub(cc.bytes, LHS.bytes, RHS.bytes); + DP(cc); + return sc_isnonzero(cc.bytes) == 0; + } + + //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures) + //These are aka MG signatutes in earlier drafts of the ring ct paper + // c.f. http://eprint.iacr.org/2015/1098 section 2. + // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i + // Gen creates a signature which proves that for some column in the keymatrix "pk" + // the signer knows a secret key for each row in that column + // Ver verifies that the MG sig was created correctly + keyV keyImageV(const keyV &xx) { + keyV II(xx.size()); + size_t i = 0; + for (i = 0; i < xx.size(); i++) { + II[i] = scalarmultKey(hashToPoint(scalarmultBase(xx[i])), xx[i]); + } + return II; + } + + + //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures) + //This is a just slghtly more efficient version than the ones described below + //(will be explained in more detail in Ring Multisig paper + //These are aka MG signatutes in earlier drafts of the ring ct paper + // c.f. http://eprint.iacr.org/2015/1098 section 2. + // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i + // Gen creates a signature which proves that for some column in the keymatrix "pk" + // the signer knows a secret key for each row in that column + // Ver verifies that the MG sig was created correctly + mgSig MLSAG_Gen(key message, const keyM & pk, const keyV & xx, const int index) { + mgSig rv; + int rows = pk[0].size(); + int cols = pk.size(); + if (cols < 2) { + printf("Error! What is c if cols = 1!"); + } + int i = 0, j = 0; + key c, c_old, L, R, Hi; + sc_0(c_old.bytes); + vector<geDsmp> Ip(rows); + rv.II = keyV(rows); + rv.ss = keyM(cols, rv.II); + keyV alpha(rows); + keyV aG(rows); + keyV aHP(rows); + key m2hash; + unsigned char m2[128]; + memcpy(m2, message.bytes, 32); + DP("here1"); + for (i = 0; i < rows; i++) { + skpkGen(alpha[i], aG[i]); //need to save alphas for later.. + Hi = hashToPoint(pk[index][i]); + aHP[i] = scalarmultKey(Hi, alpha[i]); + memcpy(m2+32, pk[index][i].bytes, 32); + memcpy(m2 + 64, aG[i].bytes, 32); + memcpy(m2 + 96, aHP[i].bytes, 32); + rv.II[i] = scalarmultKey(Hi, xx[i]); + precomp(Ip[i].k, rv.II[i]); + m2hash = hash_to_scalar128(m2); + sc_add(c_old.bytes, c_old.bytes, m2hash.bytes); + } + + i = (index + 1) % cols; + if (i == 0) { + copy(rv.cc, c_old); + } + while (i != index) { + + rv.ss[i] = skvGen(rows); + sc_0(c.bytes); + for (j = 0; j < rows; j++) { + addKeys2(L, rv.ss[i][j], c_old, pk[i][j]); + hashToPoint(Hi, pk[i][j]); + addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k); + memcpy(m2+32, pk[i][j].bytes, 32); + memcpy(m2 + 64, L.bytes, 32); + memcpy(m2 + 96, R.bytes, 32); + m2hash = hash_to_scalar128(m2); + sc_add(c.bytes, c.bytes, m2hash.bytes); + } + copy(c_old, c); + i = (i + 1) % cols; + + if (i == 0) { + copy(rv.cc, c_old); + } + } + for (j = 0; j < rows; j++) { + sc_mulsub(rv.ss[index][j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes); + } + return rv; + } + + //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures) + //This is a just slghtly more efficient version than the ones described below + //(will be explained in more detail in Ring Multisig paper + //These are aka MG signatutes in earlier drafts of the ring ct paper + // c.f. http://eprint.iacr.org/2015/1098 section 2. + // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i + // Gen creates a signature which proves that for some column in the keymatrix "pk" + // the signer knows a secret key for each row in that column + // Ver verifies that the MG sig was created correctly + bool MLSAG_Ver(key message, keyM & pk, mgSig & rv) { + + int rows = pk[0].size(); + int cols = pk.size(); + if (cols < 2) { + printf("Error! What is c if cols = 1!"); + } + int i = 0, j = 0; + key c, L, R, Hi; + key c_old = copy(rv.cc); + vector<geDsmp> Ip(rows); + for (i= 0 ; i< rows ; i++) { + precomp(Ip[i].k, rv.II[i]); + } + unsigned char m2[128]; + memcpy(m2, message.bytes, 32); + + key m2hash; + i = 0; + while (i < cols) { + sc_0(c.bytes); + for (j = 0; j < rows; j++) { + addKeys2(L, rv.ss[i][j], c_old, pk[i][j]); + hashToPoint(Hi, pk[i][j]); + addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k); + memcpy(m2 + 32, pk[i][j].bytes, 32); + memcpy(m2 + 64, L.bytes, 32); + memcpy(m2 + 96, R.bytes, 32); + m2hash = hash_to_scalar128(m2); + sc_add(c.bytes, c.bytes, m2hash.bytes); + } + copy(c_old, c); + i = (i + 1); + } + DP("c0"); + DP(rv.cc); + DP("c_old"); + DP(c_old); + sc_sub(c.bytes, c_old.bytes, rv.cc.bytes); + return sc_isnonzero(c.bytes) == 0; + } + + + + //proveRange and verRange + //proveRange gives C, and mask such that \sumCi = C + // c.f. http://eprint.iacr.org/2015/1098 section 5.1 + // and Ci is a commitment to either 0 or 2^i, i=0,...,63 + // thus this proves that "amount" is in [0, 2^64] + // mask is a such that C = aG + bH, and b = amount + //verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i + rangeSig proveRange(key & C, key & mask, const xmr_amount & amount) { + sc_0(mask.bytes); + identity(C); + bits b; + d2b(b, amount); + rangeSig sig; + key64 ai; + key64 CiH; + int i = 0; + for (i = 0; i < ATOMS; i++) { + sc_0(ai[i].bytes); + if (b[i] == 0) { + scalarmultBase(sig.Ci[i], ai[i]); + } + if (b[i] == 1) { + addKeys1(sig.Ci[i], ai[i], H2[i]); + } + subKeys(CiH[i], sig.Ci[i], H2[i]); + sc_add(mask.bytes, mask.bytes, ai[i].bytes); + addKeys(C, C, sig.Ci[i]); + } + sig.asig = GenASNL(ai, sig.Ci, CiH, b); + return sig; + } + + //proveRange and verRange + //proveRange gives C, and mask such that \sumCi = C + // c.f. http://eprint.iacr.org/2015/1098 section 5.1 + // and Ci is a commitment to either 0 or 2^i, i=0,...,63 + // thus this proves that "amount" is in [0, 2^64] + // mask is a such that C = aG + bH, and b = amount + //verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i + bool verRange(key & C, rangeSig & as) { + key64 CiH; + int i = 0; + key Ctmp = identity(); + for (i = 0; i < 64; i++) { + subKeys(CiH[i], as.Ci[i], H2[i]); + addKeys(Ctmp, Ctmp, as.Ci[i]); + } + bool reb = equalKeys(C, Ctmp); + DP("is sum Ci = C:"); + DP(reb); + bool rab = VerASNL(as.Ci, CiH, as.asig); + DP("Is in range?"); + DP(rab); + return (reb && rab); + } + + //Ring-ct MG sigs + //Prove: + // c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10. + // This does the MG sig on the "dest" part of the given key matrix, and + // the last row is the sum of input commitments from that column - sum output commitments + // this shows that sum inputs = sum outputs + //Ver: + // verifies the above sig is created corretly + mgSig proveRctMG(const ctkeyM & pubs, const ctkeyV & inSk, const ctkeyV &outSk, const ctkeyV & outPk, int index) { + mgSig mg; + //setup vars + int rows = pubs[0].size(); + int cols = pubs.size(); + keyV sk(rows + 1); + keyV tmp(rows + 1); + int i = 0, j = 0; + for (i = 0; i < rows + 1; i++) { + sc_0(sk[i].bytes); + identity(tmp[i]); + } + keyM M(cols, tmp); + //create the matrix to mg sig + for (i = 0; i < cols; i++) { + M[i][rows] = identity(); + for (j = 0; j < rows; j++) { + M[i][j] = pubs[i][j].dest; + addKeys(M[i][rows], M[i][rows], pubs[i][j].mask); + } + } + sc_0(sk[rows].bytes); + for (j = 0; j < rows; j++) { + sk[j] = copy(inSk[j].dest); + sc_add(sk[rows].bytes, sk[rows].bytes, inSk[j].mask.bytes); + } + for (i = 0; i < cols; i++) { + for (size_t j = 0; j < outPk.size(); j++) { + subKeys(M[i][rows], M[i][rows], outPk[j].mask); + } + } + for (size_t j = 0; j < outPk.size(); j++) { + sc_sub(sk[rows].bytes, sk[rows].bytes, outSk[j].mask.bytes); + } + key message = cn_fast_hash(outPk); + return MLSAG_Gen(message, M, sk, index); + } + + + //Ring-ct MG sigs + //Prove: + // c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10. + // This does the MG sig on the "dest" part of the given key matrix, and + // the last row is the sum of input commitments from that column - sum output commitments + // this shows that sum inputs = sum outputs + //Ver: + // verifies the above sig is created corretly + bool verRctMG(mgSig mg, ctkeyM & pubs, ctkeyV & outPk) { + //setup vars + int rows = pubs[0].size(); + int cols = pubs.size(); + keyV tmp(rows + 1); + int i = 0, j = 0; + for (i = 0; i < rows + 1; i++) { + identity(tmp[i]); + } + keyM M(cols, tmp); + + //create the matrix to mg sig + for (j = 0; j < rows; j++) { + for (i = 0; i < cols; i++) { + M[i][j] = pubs[i][j].dest; + addKeys(M[i][rows], M[i][rows], pubs[i][j].mask); + } + } + for (size_t j = 0; j < outPk.size(); j++) { + for (i = 0; i < cols; i++) { + subKeys(M[i][rows], M[i][rows], outPk[j].mask); + } + + } + key message = cn_fast_hash(outPk); + DP("message:"); + DP(message); + return MLSAG_Ver(message, M, mg); + + } + + //These functions get keys from blockchain + //replace these when connecting blockchain + //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with + //populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk + // the return value are the key matrix, and the index where inPk was put (random). + void getKeyFromBlockchain(ctkey & a, size_t reference_index) { + a.mask = pkGen(); + a.dest = pkGen(); + } + + //These functions get keys from blockchain + //replace these when connecting blockchain + //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with + //populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk + // the return value are the key matrix, and the index where inPk was put (random). + tuple<ctkeyM, xmr_amount> populateFromBlockchain(ctkeyV inPk, int mixin) { + int rows = inPk.size(); + ctkeyM rv(mixin, inPk); + int index = randXmrAmount(mixin); + int i = 0, j = 0; + for (i = 0; i < mixin; i++) { + if (i != index) { + for (j = 0; j < rows; j++) { + getKeyFromBlockchain(rv[i][j], (size_t)randXmrAmount); + } + } + } + return make_tuple(rv, index); + } + + //RingCT protocol + //genRct: + // creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the + // columns that are claimed as inputs, and that the sum of inputs = sum of outputs. + // Also contains masked "amount" and "mask" so the receiver can see how much they received + //verRct: + // verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct + //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1) + // uses the attached ecdh info to find the amounts represented by each output commitment + // must know the destination private key to find the correct amount, else will return a random number + rctSig genRct(ctkeyV & inSk, ctkeyV & inPk, const keyV & destinations, const vector<xmr_amount> amounts, const int mixin) { + rctSig rv; + rv.outPk.resize(destinations.size()); + rv.rangeSigs.resize(destinations.size()); + rv.ecdhInfo.resize(destinations.size()); + + size_t i = 0; + keyV masks(destinations.size()); //sk mask.. + ctkeyV outSk(destinations.size()); + for (i = 0; i < destinations.size(); i++) { + //add destination to sig + rv.outPk[i].dest = copy(destinations[i]); + //compute range proof + rv.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, amounts[i]); + #ifdef DBG + verRange(rv.outPk[i].mask, rv.rangeSigs[i]); + #endif + + //mask amount and mask + rv.ecdhInfo[i].mask = copy(outSk[i].mask); + rv.ecdhInfo[i].amount = d2h(amounts[i]); + ecdhEncode(rv.ecdhInfo[i], destinations[i]); + + } + + int index; + tie(rv.mixRing, index) = populateFromBlockchain(inPk, mixin); + rv.MG = proveRctMG(rv.mixRing, inSk, outSk, rv.outPk, index); + return rv; + } + + //RingCT protocol + //genRct: + // creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the + // columns that are claimed as inputs, and that the sum of inputs = sum of outputs. + // Also contains masked "amount" and "mask" so the receiver can see how much they received + //verRct: + // verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct + //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1) + // uses the attached ecdh info to find the amounts represented by each output commitment + // must know the destination private key to find the correct amount, else will return a random number + bool verRct(rctSig & rv) { + size_t i = 0; + bool rvb = true; + bool tmp; + DP("range proofs verified?"); + for (i = 0; i < rv.outPk.size(); i++) { + tmp = verRange(rv.outPk[i].mask, rv.rangeSigs[i]); + DP(tmp); + rvb = (rvb && tmp); + } + bool mgVerd = verRctMG(rv.MG, rv.mixRing, rv.outPk); + DP("mg sig verified?"); + DP(mgVerd); + + return (rvb && mgVerd); + } + + //RingCT protocol + //genRct: + // creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the + // columns that are claimed as inputs, and that the sum of inputs = sum of outputs. + // Also contains masked "amount" and "mask" so the receiver can see how much they received + //verRct: + // verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct + //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1) + // uses the attached ecdh info to find the amounts represented by each output commitment + // must know the destination private key to find the correct amount, else will return a random number + xmr_amount decodeRct(rctSig & rv, key & sk, int i) { + //mask amount and mask + ecdhDecode(rv.ecdhInfo[i], sk); + key mask = rv.ecdhInfo[i].mask; + key amount = rv.ecdhInfo[i].amount; + key C = rv.outPk[i].mask; + DP("C"); + DP(C); + key Ctmp; + addKeys2(Ctmp, mask, amount, H); + DP("Ctmp"); + DP(Ctmp); + if (equalKeys(C, Ctmp) == false) { + printf("warning, amount decoded incorrectly, will be unable to spend"); + } + return h2d(amount); + } + +} |