aboutsummaryrefslogtreecommitdiff
path: root/src/ringct/rctSigs.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/ringct/rctSigs.cpp533
1 files changed, 533 insertions, 0 deletions
diff --git a/src/ringct/rctSigs.cpp b/src/ringct/rctSigs.cpp
new file mode 100644
index 000000000..d26678165
--- /dev/null
+++ b/src/ringct/rctSigs.cpp
@@ -0,0 +1,533 @@
+// Copyright (c) 2016, Monero Research Labs
+//
+// Author: Shen Noether <shen.noether@gmx.com>
+//
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without modification, are
+// permitted provided that the following conditions are met:
+//
+// 1. Redistributions of source code must retain the above copyright notice, this list of
+// conditions and the following disclaimer.
+//
+// 2. Redistributions in binary form must reproduce the above copyright notice, this list
+// of conditions and the following disclaimer in the documentation and/or other
+// materials provided with the distribution.
+//
+// 3. Neither the name of the copyright holder nor the names of its contributors may be
+// used to endorse or promote products derived from this software without specific
+// prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
+// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
+// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
+// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "rctSigs.h"
+using namespace crypto;
+using namespace std;
+
+namespace rct {
+
+ //Schnorr Non-linkable
+ //Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2
+ //Ver Verifies that signer knows an "x" such that xG = one of P1 or P2
+ //These are called in the below ASNL sig generation
+
+ void GenSchnorrNonLinkable(key & L1, key & s1, key & s2, const key & x, const key & P1, const key & P2, int index) {
+ key c1, c2, L2;
+ key a = skGen();
+ if (index == 0) {
+ scalarmultBase(L1, a);
+ hash_to_scalar(c2, L1);
+ skGen(s2);
+ addKeys2(L2, s2, c2, P2);
+ hash_to_scalar(c1, L2);
+ sc_mulsub(s1.bytes, x.bytes, c1.bytes, a.bytes);
+ }
+ if (index == 1) {
+ scalarmultBase(L2, a);
+ skGen(s1);
+ hash_to_scalar(c1, L2);
+ addKeys2(L1, s1, c1, P1);
+ hash_to_scalar(c2, L1);
+ sc_mulsub(s2.bytes, x.bytes, c2.bytes, a.bytes);
+ }
+ }
+
+ //Schnorr Non-linkable
+ //Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2
+ //Ver Verifies that signer knows an "x" such that xG = one of P1 or P2
+ //These are called in the below ASNL sig generation
+ bool VerSchnorrNonLinkable(const key & P1, const key & P2, const key & L1, const key & s1, const key & s2) {
+ key c2, L2, c1, L1p;
+ hash_to_scalar(c2, L1);
+ addKeys2(L2, s2, c2, P2);
+ hash_to_scalar(c1, L2);
+ addKeys2(L1p, s1, c1, P1);
+
+ return equalKeys(L1, L1p);
+ }
+
+ //Aggregate Schnorr Non-linkable Ring Signature (ASNL)
+ // c.f. http://eprint.iacr.org/2015/1098 section 5.
+ // These are used in range proofs (alternatively Borromean could be used)
+ // Gen gives a signature which proves the signer knows, for each i,
+ // an x[i] such that x[i]G = one of P1[i] or P2[i]
+ // Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i
+ asnlSig GenASNL(key64 x, key64 P1, key64 P2, bits indices) {
+ DP("Generating Aggregate Schnorr Non-linkable Ring Signature\n");
+ key64 s1;
+ int j = 0;
+ asnlSig rv;
+ rv.s = zero();
+ for (j = 0; j < ATOMS; j++) {
+ //void GenSchnorrNonLinkable(Bytes L1, Bytes s1, Bytes s2, const Bytes x, const Bytes P1,const Bytes P2, int index) {
+ GenSchnorrNonLinkable(rv.L1[j], s1[j], rv.s2[j], x[j], P1[j], P2[j], (int)indices[j]);
+ sc_add(rv.s.bytes, rv.s.bytes, s1[j].bytes);
+ }
+ return rv;
+ }
+
+ //Aggregate Schnorr Non-linkable Ring Signature (ASNL)
+ // c.f. http://eprint.iacr.org/2015/1098 section 5.
+ // These are used in range proofs (alternatively Borromean could be used)
+ // Gen gives a signature which proves the signer knows, for each i,
+ // an x[i] such that x[i]G = one of P1[i] or P2[i]
+ // Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i
+ bool VerASNL(key64 P1, key64 P2, asnlSig &as) {
+ DP("Verifying Aggregate Schnorr Non-linkable Ring Signature\n");
+ key LHS = identity();
+ key RHS = scalarmultBase(as.s);
+ key c2, L2, c1;
+ int j = 0;
+ for (j = 0; j < ATOMS; j++) {
+ hash_to_scalar(c2, as.L1[j]);
+ addKeys2(L2, as.s2[j], c2, P2[j]);
+ addKeys(LHS, LHS, as.L1[j]);
+ hash_to_scalar(c1, L2);
+ addKeys(RHS, RHS, scalarmultKey(P1[j], c1));
+ }
+ key cc;
+ sc_sub(cc.bytes, LHS.bytes, RHS.bytes);
+ DP(cc);
+ return sc_isnonzero(cc.bytes) == 0;
+ }
+
+ //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
+ //These are aka MG signatutes in earlier drafts of the ring ct paper
+ // c.f. http://eprint.iacr.org/2015/1098 section 2.
+ // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
+ // Gen creates a signature which proves that for some column in the keymatrix "pk"
+ // the signer knows a secret key for each row in that column
+ // Ver verifies that the MG sig was created correctly
+ keyV keyImageV(const keyV &xx) {
+ keyV II(xx.size());
+ size_t i = 0;
+ for (i = 0; i < xx.size(); i++) {
+ II[i] = scalarmultKey(hashToPoint(scalarmultBase(xx[i])), xx[i]);
+ }
+ return II;
+ }
+
+
+ //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
+ //This is a just slghtly more efficient version than the ones described below
+ //(will be explained in more detail in Ring Multisig paper
+ //These are aka MG signatutes in earlier drafts of the ring ct paper
+ // c.f. http://eprint.iacr.org/2015/1098 section 2.
+ // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
+ // Gen creates a signature which proves that for some column in the keymatrix "pk"
+ // the signer knows a secret key for each row in that column
+ // Ver verifies that the MG sig was created correctly
+ mgSig MLSAG_Gen(key message, const keyM & pk, const keyV & xx, const int index) {
+ mgSig rv;
+ int rows = pk[0].size();
+ int cols = pk.size();
+ if (cols < 2) {
+ printf("Error! What is c if cols = 1!");
+ }
+ int i = 0, j = 0;
+ key c, c_old, L, R, Hi;
+ sc_0(c_old.bytes);
+ vector<geDsmp> Ip(rows);
+ rv.II = keyV(rows);
+ rv.ss = keyM(cols, rv.II);
+ keyV alpha(rows);
+ keyV aG(rows);
+ keyV aHP(rows);
+ key m2hash;
+ unsigned char m2[128];
+ memcpy(m2, message.bytes, 32);
+ DP("here1");
+ for (i = 0; i < rows; i++) {
+ skpkGen(alpha[i], aG[i]); //need to save alphas for later..
+ Hi = hashToPoint(pk[index][i]);
+ aHP[i] = scalarmultKey(Hi, alpha[i]);
+ memcpy(m2+32, pk[index][i].bytes, 32);
+ memcpy(m2 + 64, aG[i].bytes, 32);
+ memcpy(m2 + 96, aHP[i].bytes, 32);
+ rv.II[i] = scalarmultKey(Hi, xx[i]);
+ precomp(Ip[i].k, rv.II[i]);
+ m2hash = hash_to_scalar128(m2);
+ sc_add(c_old.bytes, c_old.bytes, m2hash.bytes);
+ }
+
+ i = (index + 1) % cols;
+ if (i == 0) {
+ copy(rv.cc, c_old);
+ }
+ while (i != index) {
+
+ rv.ss[i] = skvGen(rows);
+ sc_0(c.bytes);
+ for (j = 0; j < rows; j++) {
+ addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
+ hashToPoint(Hi, pk[i][j]);
+ addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
+ memcpy(m2+32, pk[i][j].bytes, 32);
+ memcpy(m2 + 64, L.bytes, 32);
+ memcpy(m2 + 96, R.bytes, 32);
+ m2hash = hash_to_scalar128(m2);
+ sc_add(c.bytes, c.bytes, m2hash.bytes);
+ }
+ copy(c_old, c);
+ i = (i + 1) % cols;
+
+ if (i == 0) {
+ copy(rv.cc, c_old);
+ }
+ }
+ for (j = 0; j < rows; j++) {
+ sc_mulsub(rv.ss[index][j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes);
+ }
+ return rv;
+ }
+
+ //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
+ //This is a just slghtly more efficient version than the ones described below
+ //(will be explained in more detail in Ring Multisig paper
+ //These are aka MG signatutes in earlier drafts of the ring ct paper
+ // c.f. http://eprint.iacr.org/2015/1098 section 2.
+ // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
+ // Gen creates a signature which proves that for some column in the keymatrix "pk"
+ // the signer knows a secret key for each row in that column
+ // Ver verifies that the MG sig was created correctly
+ bool MLSAG_Ver(key message, keyM & pk, mgSig & rv) {
+
+ int rows = pk[0].size();
+ int cols = pk.size();
+ if (cols < 2) {
+ printf("Error! What is c if cols = 1!");
+ }
+ int i = 0, j = 0;
+ key c, L, R, Hi;
+ key c_old = copy(rv.cc);
+ vector<geDsmp> Ip(rows);
+ for (i= 0 ; i< rows ; i++) {
+ precomp(Ip[i].k, rv.II[i]);
+ }
+ unsigned char m2[128];
+ memcpy(m2, message.bytes, 32);
+
+ key m2hash;
+ i = 0;
+ while (i < cols) {
+ sc_0(c.bytes);
+ for (j = 0; j < rows; j++) {
+ addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
+ hashToPoint(Hi, pk[i][j]);
+ addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
+ memcpy(m2 + 32, pk[i][j].bytes, 32);
+ memcpy(m2 + 64, L.bytes, 32);
+ memcpy(m2 + 96, R.bytes, 32);
+ m2hash = hash_to_scalar128(m2);
+ sc_add(c.bytes, c.bytes, m2hash.bytes);
+ }
+ copy(c_old, c);
+ i = (i + 1);
+ }
+ DP("c0");
+ DP(rv.cc);
+ DP("c_old");
+ DP(c_old);
+ sc_sub(c.bytes, c_old.bytes, rv.cc.bytes);
+ return sc_isnonzero(c.bytes) == 0;
+ }
+
+
+
+ //proveRange and verRange
+ //proveRange gives C, and mask such that \sumCi = C
+ // c.f. http://eprint.iacr.org/2015/1098 section 5.1
+ // and Ci is a commitment to either 0 or 2^i, i=0,...,63
+ // thus this proves that "amount" is in [0, 2^64]
+ // mask is a such that C = aG + bH, and b = amount
+ //verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
+ rangeSig proveRange(key & C, key & mask, const xmr_amount & amount) {
+ sc_0(mask.bytes);
+ identity(C);
+ bits b;
+ d2b(b, amount);
+ rangeSig sig;
+ key64 ai;
+ key64 CiH;
+ int i = 0;
+ for (i = 0; i < ATOMS; i++) {
+ sc_0(ai[i].bytes);
+ if (b[i] == 0) {
+ scalarmultBase(sig.Ci[i], ai[i]);
+ }
+ if (b[i] == 1) {
+ addKeys1(sig.Ci[i], ai[i], H2[i]);
+ }
+ subKeys(CiH[i], sig.Ci[i], H2[i]);
+ sc_add(mask.bytes, mask.bytes, ai[i].bytes);
+ addKeys(C, C, sig.Ci[i]);
+ }
+ sig.asig = GenASNL(ai, sig.Ci, CiH, b);
+ return sig;
+ }
+
+ //proveRange and verRange
+ //proveRange gives C, and mask such that \sumCi = C
+ // c.f. http://eprint.iacr.org/2015/1098 section 5.1
+ // and Ci is a commitment to either 0 or 2^i, i=0,...,63
+ // thus this proves that "amount" is in [0, 2^64]
+ // mask is a such that C = aG + bH, and b = amount
+ //verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
+ bool verRange(key & C, rangeSig & as) {
+ key64 CiH;
+ int i = 0;
+ key Ctmp = identity();
+ for (i = 0; i < 64; i++) {
+ subKeys(CiH[i], as.Ci[i], H2[i]);
+ addKeys(Ctmp, Ctmp, as.Ci[i]);
+ }
+ bool reb = equalKeys(C, Ctmp);
+ DP("is sum Ci = C:");
+ DP(reb);
+ bool rab = VerASNL(as.Ci, CiH, as.asig);
+ DP("Is in range?");
+ DP(rab);
+ return (reb && rab);
+ }
+
+ //Ring-ct MG sigs
+ //Prove:
+ // c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10.
+ // This does the MG sig on the "dest" part of the given key matrix, and
+ // the last row is the sum of input commitments from that column - sum output commitments
+ // this shows that sum inputs = sum outputs
+ //Ver:
+ // verifies the above sig is created corretly
+ mgSig proveRctMG(const ctkeyM & pubs, const ctkeyV & inSk, const ctkeyV &outSk, const ctkeyV & outPk, int index) {
+ mgSig mg;
+ //setup vars
+ int rows = pubs[0].size();
+ int cols = pubs.size();
+ keyV sk(rows + 1);
+ keyV tmp(rows + 1);
+ int i = 0, j = 0;
+ for (i = 0; i < rows + 1; i++) {
+ sc_0(sk[i].bytes);
+ identity(tmp[i]);
+ }
+ keyM M(cols, tmp);
+ //create the matrix to mg sig
+ for (i = 0; i < cols; i++) {
+ M[i][rows] = identity();
+ for (j = 0; j < rows; j++) {
+ M[i][j] = pubs[i][j].dest;
+ addKeys(M[i][rows], M[i][rows], pubs[i][j].mask);
+ }
+ }
+ sc_0(sk[rows].bytes);
+ for (j = 0; j < rows; j++) {
+ sk[j] = copy(inSk[j].dest);
+ sc_add(sk[rows].bytes, sk[rows].bytes, inSk[j].mask.bytes);
+ }
+ for (i = 0; i < cols; i++) {
+ for (size_t j = 0; j < outPk.size(); j++) {
+ subKeys(M[i][rows], M[i][rows], outPk[j].mask);
+ }
+ }
+ for (size_t j = 0; j < outPk.size(); j++) {
+ sc_sub(sk[rows].bytes, sk[rows].bytes, outSk[j].mask.bytes);
+ }
+ key message = cn_fast_hash(outPk);
+ return MLSAG_Gen(message, M, sk, index);
+ }
+
+
+ //Ring-ct MG sigs
+ //Prove:
+ // c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10.
+ // This does the MG sig on the "dest" part of the given key matrix, and
+ // the last row is the sum of input commitments from that column - sum output commitments
+ // this shows that sum inputs = sum outputs
+ //Ver:
+ // verifies the above sig is created corretly
+ bool verRctMG(mgSig mg, ctkeyM & pubs, ctkeyV & outPk) {
+ //setup vars
+ int rows = pubs[0].size();
+ int cols = pubs.size();
+ keyV tmp(rows + 1);
+ int i = 0, j = 0;
+ for (i = 0; i < rows + 1; i++) {
+ identity(tmp[i]);
+ }
+ keyM M(cols, tmp);
+
+ //create the matrix to mg sig
+ for (j = 0; j < rows; j++) {
+ for (i = 0; i < cols; i++) {
+ M[i][j] = pubs[i][j].dest;
+ addKeys(M[i][rows], M[i][rows], pubs[i][j].mask);
+ }
+ }
+ for (size_t j = 0; j < outPk.size(); j++) {
+ for (i = 0; i < cols; i++) {
+ subKeys(M[i][rows], M[i][rows], outPk[j].mask);
+ }
+
+ }
+ key message = cn_fast_hash(outPk);
+ DP("message:");
+ DP(message);
+ return MLSAG_Ver(message, M, mg);
+
+ }
+
+ //These functions get keys from blockchain
+ //replace these when connecting blockchain
+ //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
+ //populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
+ // the return value are the key matrix, and the index where inPk was put (random).
+ void getKeyFromBlockchain(ctkey & a, size_t reference_index) {
+ a.mask = pkGen();
+ a.dest = pkGen();
+ }
+
+ //These functions get keys from blockchain
+ //replace these when connecting blockchain
+ //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
+ //populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
+ // the return value are the key matrix, and the index where inPk was put (random).
+ tuple<ctkeyM, xmr_amount> populateFromBlockchain(ctkeyV inPk, int mixin) {
+ int rows = inPk.size();
+ ctkeyM rv(mixin, inPk);
+ int index = randXmrAmount(mixin);
+ int i = 0, j = 0;
+ for (i = 0; i < mixin; i++) {
+ if (i != index) {
+ for (j = 0; j < rows; j++) {
+ getKeyFromBlockchain(rv[i][j], (size_t)randXmrAmount);
+ }
+ }
+ }
+ return make_tuple(rv, index);
+ }
+
+ //RingCT protocol
+ //genRct:
+ // creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
+ // columns that are claimed as inputs, and that the sum of inputs = sum of outputs.
+ // Also contains masked "amount" and "mask" so the receiver can see how much they received
+ //verRct:
+ // verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
+ //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
+ // uses the attached ecdh info to find the amounts represented by each output commitment
+ // must know the destination private key to find the correct amount, else will return a random number
+ rctSig genRct(ctkeyV & inSk, ctkeyV & inPk, const keyV & destinations, const vector<xmr_amount> amounts, const int mixin) {
+ rctSig rv;
+ rv.outPk.resize(destinations.size());
+ rv.rangeSigs.resize(destinations.size());
+ rv.ecdhInfo.resize(destinations.size());
+
+ size_t i = 0;
+ keyV masks(destinations.size()); //sk mask..
+ ctkeyV outSk(destinations.size());
+ for (i = 0; i < destinations.size(); i++) {
+ //add destination to sig
+ rv.outPk[i].dest = copy(destinations[i]);
+ //compute range proof
+ rv.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, amounts[i]);
+ #ifdef DBG
+ verRange(rv.outPk[i].mask, rv.rangeSigs[i]);
+ #endif
+
+ //mask amount and mask
+ rv.ecdhInfo[i].mask = copy(outSk[i].mask);
+ rv.ecdhInfo[i].amount = d2h(amounts[i]);
+ ecdhEncode(rv.ecdhInfo[i], destinations[i]);
+
+ }
+
+ int index;
+ tie(rv.mixRing, index) = populateFromBlockchain(inPk, mixin);
+ rv.MG = proveRctMG(rv.mixRing, inSk, outSk, rv.outPk, index);
+ return rv;
+ }
+
+ //RingCT protocol
+ //genRct:
+ // creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
+ // columns that are claimed as inputs, and that the sum of inputs = sum of outputs.
+ // Also contains masked "amount" and "mask" so the receiver can see how much they received
+ //verRct:
+ // verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
+ //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
+ // uses the attached ecdh info to find the amounts represented by each output commitment
+ // must know the destination private key to find the correct amount, else will return a random number
+ bool verRct(rctSig & rv) {
+ size_t i = 0;
+ bool rvb = true;
+ bool tmp;
+ DP("range proofs verified?");
+ for (i = 0; i < rv.outPk.size(); i++) {
+ tmp = verRange(rv.outPk[i].mask, rv.rangeSigs[i]);
+ DP(tmp);
+ rvb = (rvb && tmp);
+ }
+ bool mgVerd = verRctMG(rv.MG, rv.mixRing, rv.outPk);
+ DP("mg sig verified?");
+ DP(mgVerd);
+
+ return (rvb && mgVerd);
+ }
+
+ //RingCT protocol
+ //genRct:
+ // creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
+ // columns that are claimed as inputs, and that the sum of inputs = sum of outputs.
+ // Also contains masked "amount" and "mask" so the receiver can see how much they received
+ //verRct:
+ // verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
+ //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
+ // uses the attached ecdh info to find the amounts represented by each output commitment
+ // must know the destination private key to find the correct amount, else will return a random number
+ xmr_amount decodeRct(rctSig & rv, key & sk, int i) {
+ //mask amount and mask
+ ecdhDecode(rv.ecdhInfo[i], sk);
+ key mask = rv.ecdhInfo[i].mask;
+ key amount = rv.ecdhInfo[i].amount;
+ key C = rv.outPk[i].mask;
+ DP("C");
+ DP(C);
+ key Ctmp;
+ addKeys2(Ctmp, mask, amount, H);
+ DP("Ctmp");
+ DP(Ctmp);
+ if (equalKeys(C, Ctmp) == false) {
+ printf("warning, amount decoded incorrectly, will be unable to spend");
+ }
+ return h2d(amount);
+ }
+
+}