aboutsummaryrefslogtreecommitdiff
path: root/src/ringct/bulletproofs.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/ringct/bulletproofs.cc')
-rw-r--r--src/ringct/bulletproofs.cc1033
1 files changed, 676 insertions, 357 deletions
diff --git a/src/ringct/bulletproofs.cc b/src/ringct/bulletproofs.cc
index fd15ffbc4..bed48769a 100644
--- a/src/ringct/bulletproofs.cc
+++ b/src/ringct/bulletproofs.cc
@@ -29,15 +29,16 @@
// Adapted from Java code by Sarang Noether
#include <stdlib.h>
-#include <openssl/ssl.h>
#include <boost/thread/mutex.hpp>
#include "misc_log_ex.h"
#include "common/perf_timer.h"
+#include "cryptonote_config.h"
extern "C"
{
#include "crypto/crypto-ops.h"
}
#include "rctOps.h"
+#include "multiexp.h"
#include "bulletproofs.h"
#undef MONERO_DEFAULT_LOG_CATEGORY
@@ -45,29 +46,62 @@ extern "C"
//#define DEBUG_BP
+#if 1
#define PERF_TIMER_START_BP(x) PERF_TIMER_START_UNIT(x, 1000000)
+#define PERF_TIMER_STOP_BP(x) PERF_TIMER_STOP(x)
+#else
+#define PERF_TIMER_START_BP(x) ((void*)0)
+#define PERF_TIMER_STOP_BP(x) ((void*)0)
+#endif
+
+#define STRAUS_SIZE_LIMIT 232
+#define PIPPENGER_SIZE_LIMIT 0
namespace rct
{
static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b);
-static rct::keyV vector_powers(rct::key x, size_t n);
+static rct::keyV vector_powers(const rct::key &x, size_t n);
+static rct::keyV vector_dup(const rct::key &x, size_t n);
static rct::key inner_product(const rct::keyV &a, const rct::keyV &b);
static constexpr size_t maxN = 64;
-static rct::key Hi[maxN], Gi[maxN];
-static ge_dsmp Gprecomp[64], Hprecomp[64];
+static constexpr size_t maxM = BULLETPROOF_MAX_OUTPUTS;
+static rct::key Hi[maxN*maxM], Gi[maxN*maxM];
+static ge_p3 Hi_p3[maxN*maxM], Gi_p3[maxN*maxM];
+static std::shared_ptr<straus_cached_data> straus_HiGi_cache;
+static std::shared_ptr<pippenger_cached_data> pippenger_HiGi_cache;
static const rct::key TWO = { {0x02, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } };
-static const rct::keyV oneN = vector_powers(rct::identity(), maxN);
+static const rct::key MINUS_ONE = { { 0xec, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 } };
+static const rct::key MINUS_INV_EIGHT = { { 0x74, 0xa4, 0x19, 0x7a, 0xf0, 0x7d, 0x0b, 0xf7, 0x05, 0xc2, 0xda, 0x25, 0x2b, 0x5c, 0x0b, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a } };
+static const rct::keyV oneN = vector_dup(rct::identity(), maxN);
static const rct::keyV twoN = vector_powers(TWO, maxN);
static const rct::key ip12 = inner_product(oneN, twoN);
static boost::mutex init_mutex;
+static inline rct::key multiexp(const std::vector<MultiexpData> &data, size_t HiGi_size)
+{
+ if (HiGi_size > 0)
+ {
+ static_assert(232 <= STRAUS_SIZE_LIMIT, "Straus in precalc mode can only be calculated till STRAUS_SIZE_LIMIT");
+ return HiGi_size <= 232 && data.size() == HiGi_size ? straus(data, straus_HiGi_cache, 0) : pippenger(data, pippenger_HiGi_cache, HiGi_size, get_pippenger_c(data.size()));
+ }
+ else
+ return data.size() <= 95 ? straus(data, NULL, 0) : pippenger(data, NULL, 0, get_pippenger_c(data.size()));
+}
+
+static inline bool is_reduced(const rct::key &scalar)
+{
+ return sc_check(scalar.bytes) == 0;
+}
+
static rct::key get_exponent(const rct::key &base, size_t idx)
{
static const std::string salt("bulletproof");
std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + salt + tools::get_varint_data(idx);
- return rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size())));
+ const rct::key e = rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size())));
+ CHECK_AND_ASSERT_THROW_MES(!(e == rct::identity()), "Exponent is point at infinity");
+ return e;
}
static void init_exponents()
@@ -77,13 +111,27 @@ static void init_exponents()
static bool init_done = false;
if (init_done)
return;
- for (size_t i = 0; i < maxN; ++i)
+ std::vector<MultiexpData> data;
+ for (size_t i = 0; i < maxN*maxM; ++i)
{
Hi[i] = get_exponent(rct::H, i * 2);
- rct::precomp(Hprecomp[i], Hi[i]);
+ CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&Hi_p3[i], Hi[i].bytes) == 0, "ge_frombytes_vartime failed");
Gi[i] = get_exponent(rct::H, i * 2 + 1);
- rct::precomp(Gprecomp[i], Gi[i]);
+ CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&Gi_p3[i], Gi[i].bytes) == 0, "ge_frombytes_vartime failed");
+
+ data.push_back({rct::zero(), Gi_p3[i]});
+ data.push_back({rct::zero(), Hi_p3[i]});
}
+
+ straus_HiGi_cache = straus_init_cache(data, STRAUS_SIZE_LIMIT);
+ pippenger_HiGi_cache = pippenger_init_cache(data, 0, PIPPENGER_SIZE_LIMIT);
+
+ MINFO("Hi/Gi cache size: " << (sizeof(Hi)+sizeof(Gi))/1024 << " kB");
+ MINFO("Hi_p3/Gi_p3 cache size: " << (sizeof(Hi_p3)+sizeof(Gi_p3))/1024 << " kB");
+ MINFO("Straus cache size: " << straus_get_cache_size(straus_HiGi_cache)/1024 << " kB");
+ MINFO("Pippenger cache size: " << pippenger_get_cache_size(pippenger_HiGi_cache)/1024 << " kB");
+ size_t cache_size = (sizeof(Hi)+sizeof(Hi_p3))*2 + straus_get_cache_size(straus_HiGi_cache) + pippenger_get_cache_size(pippenger_HiGi_cache);
+ MINFO("Total cache size: " << cache_size/1024 << "kB");
init_done = true;
}
@@ -91,61 +139,50 @@ static void init_exponents()
static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
- CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN");
- rct::key res = rct::identity();
+ CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN*maxM, "Incompatible sizes of a and maxN");
+
+ std::vector<MultiexpData> multiexp_data;
+ multiexp_data.reserve(a.size()*2);
for (size_t i = 0; i < a.size(); ++i)
{
- rct::key term;
- rct::addKeys3(term, a[i], Gprecomp[i], b[i], Hprecomp[i]);
- rct::addKeys(res, res, term);
+ multiexp_data.emplace_back(a[i], Gi_p3[i]);
+ multiexp_data.emplace_back(b[i], Hi_p3[i]);
}
- return res;
+ return multiexp(multiexp_data, 2 * a.size());
}
/* Compute a custom vector-scalar commitment */
-static rct::key vector_exponent_custom(const rct::keyV &A, const rct::keyV &B, const rct::keyV &a, const rct::keyV &b)
+static rct::key cross_vector_exponent8(size_t size, const std::vector<ge_p3> &A, size_t Ao, const std::vector<ge_p3> &B, size_t Bo, const rct::keyV &a, size_t ao, const rct::keyV &b, size_t bo, const rct::keyV *scale, const ge_p3 *extra_point, const rct::key *extra_scalar)
{
- CHECK_AND_ASSERT_THROW_MES(A.size() == B.size(), "Incompatible sizes of A and B");
- CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
- CHECK_AND_ASSERT_THROW_MES(a.size() == A.size(), "Incompatible sizes of a and A");
- CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN");
- rct::key res = rct::identity();
- for (size_t i = 0; i < a.size(); ++i)
+ CHECK_AND_ASSERT_THROW_MES(size + Ao <= A.size(), "Incompatible size for A");
+ CHECK_AND_ASSERT_THROW_MES(size + Bo <= B.size(), "Incompatible size for B");
+ CHECK_AND_ASSERT_THROW_MES(size + ao <= a.size(), "Incompatible size for a");
+ CHECK_AND_ASSERT_THROW_MES(size + bo <= b.size(), "Incompatible size for b");
+ CHECK_AND_ASSERT_THROW_MES(size <= maxN*maxM, "size is too large");
+ CHECK_AND_ASSERT_THROW_MES(!scale || size == scale->size() / 2, "Incompatible size for scale");
+ CHECK_AND_ASSERT_THROW_MES(!!extra_point == !!extra_scalar, "only one of extra point/scalar present");
+
+ std::vector<MultiexpData> multiexp_data;
+ multiexp_data.resize(size*2 + (!!extra_point));
+ for (size_t i = 0; i < size; ++i)
{
- rct::key term;
-#if 0
- // we happen to know where A and B might fall, so don't bother checking the rest
- ge_dsmp *Acache = NULL, *Bcache = NULL;
- ge_dsmp Acache_custom[1], Bcache_custom[1];
- if (Gi[i] == A[i])
- Acache = Gprecomp + i;
- else if (i<32 && Gi[i+32] == A[i])
- Acache = Gprecomp + i + 32;
- else
- {
- rct::precomp(Acache_custom[0], A[i]);
- Acache = Acache_custom;
- }
- if (i == 0 && B[i] == Hi[0])
- Bcache = Hprecomp;
- else
- {
- rct::precomp(Bcache_custom[0], B[i]);
- Bcache = Bcache_custom;
- }
- rct::addKeys3(term, a[i], *Acache, b[i], *Bcache);
-#else
- ge_dsmp Acache, Bcache;
- rct::precomp(Bcache, B[i]);
- rct::addKeys3(term, a[i], A[i], b[i], Bcache);
-#endif
- rct::addKeys(res, res, term);
+ sc_mul(multiexp_data[i*2].scalar.bytes, a[ao+i].bytes, INV_EIGHT.bytes);;
+ multiexp_data[i*2].point = A[Ao+i];
+ sc_mul(multiexp_data[i*2+1].scalar.bytes, b[bo+i].bytes, INV_EIGHT.bytes);
+ if (scale)
+ sc_mul(multiexp_data[i*2+1].scalar.bytes, multiexp_data[i*2+1].scalar.bytes, (*scale)[Bo+i].bytes);
+ multiexp_data[i*2+1].point = B[Bo+i];
}
- return res;
+ if (extra_point)
+ {
+ sc_mul(multiexp_data.back().scalar.bytes, extra_scalar->bytes, INV_EIGHT.bytes);
+ multiexp_data.back().point = *extra_point;
+ }
+ return multiexp(multiexp_data, 0);
}
/* Given a scalar, construct a vector of powers */
-static rct::keyV vector_powers(rct::key x, size_t n)
+static rct::keyV vector_powers(const rct::key &x, size_t n)
{
rct::keyV res(n);
if (n == 0)
@@ -161,6 +198,24 @@ static rct::keyV vector_powers(rct::key x, size_t n)
return res;
}
+/* Given a scalar, return the sum of its powers from 0 to n-1 */
+static rct::key vector_power_sum(const rct::key &x, size_t n)
+{
+ if (n == 0)
+ return rct::zero();
+ rct::key res = rct::identity();
+ if (n == 1)
+ return res;
+ rct::key prev = x;
+ for (size_t i = 1; i < n; ++i)
+ {
+ if (i > 1)
+ sc_mul(prev.bytes, prev.bytes, x.bytes);
+ sc_add(res.bytes, res.bytes, prev.bytes);
+ }
+ return res;
+}
+
/* Given two scalar arrays, construct the inner product */
static rct::key inner_product(const rct::keyV &a, const rct::keyV &b)
{
@@ -185,16 +240,22 @@ static rct::keyV hadamard(const rct::keyV &a, const rct::keyV &b)
return res;
}
-/* Given two curvepoint arrays, construct the Hadamard product */
-static rct::keyV hadamard2(const rct::keyV &a, const rct::keyV &b)
+/* folds a curvepoint array using a two way scaled Hadamard product */
+static void hadamard_fold(std::vector<ge_p3> &v, const rct::keyV *scale, const rct::key &a, const rct::key &b)
{
- CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
- rct::keyV res(a.size());
- for (size_t i = 0; i < a.size(); ++i)
+ CHECK_AND_ASSERT_THROW_MES((v.size() & 1) == 0, "Vector size should be even");
+ const size_t sz = v.size() / 2;
+ for (size_t n = 0; n < sz; ++n)
{
- rct::addKeys(res[i], a[i], b[i]);
+ ge_dsmp c[2];
+ ge_dsm_precomp(c[0], &v[n]);
+ ge_dsm_precomp(c[1], &v[sz + n]);
+ rct::key sa, sb;
+ if (scale) sc_mul(sa.bytes, a.bytes, (*scale)[n].bytes); else sa = a;
+ if (scale) sc_mul(sb.bytes, b.bytes, (*scale)[sz + n].bytes); else sb = b;
+ ge_double_scalarmult_precomp_vartime2_p3(&v[n], sa.bytes, c[0], sb.bytes, c[1]);
}
- return res;
+ v.resize(sz);
}
/* Add two vectors */
@@ -209,71 +270,98 @@ static rct::keyV vector_add(const rct::keyV &a, const rct::keyV &b)
return res;
}
-/* Subtract two vectors */
-static rct::keyV vector_subtract(const rct::keyV &a, const rct::keyV &b)
+/* Add a scalar to all elements of a vector */
+static rct::keyV vector_add(const rct::keyV &a, const rct::key &b)
{
- CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
- sc_sub(res[i].bytes, a[i].bytes, b[i].bytes);
+ sc_add(res[i].bytes, a[i].bytes, b.bytes);
}
return res;
}
-/* Multiply a scalar and a vector */
-static rct::keyV vector_scalar(const rct::keyV &a, const rct::key &x)
+/* Subtract a scalar from all elements of a vector */
+static rct::keyV vector_subtract(const rct::keyV &a, const rct::key &b)
{
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
- sc_mul(res[i].bytes, a[i].bytes, x.bytes);
+ sc_sub(res[i].bytes, a[i].bytes, b.bytes);
}
return res;
}
-/* Exponentiate a curve vector by a scalar */
-static rct::keyV vector_scalar2(const rct::keyV &a, const rct::key &x)
+/* Multiply a scalar and a vector */
+static rct::keyV vector_scalar(const rct::keyV &a, const rct::key &x)
{
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
- rct::scalarmultKey(res[i], a[i], x);
+ sc_mul(res[i].bytes, a[i].bytes, x.bytes);
}
return res;
}
-static rct::key switch_endianness(rct::key k)
+/* Create a vector from copies of a single value */
+static rct::keyV vector_dup(const rct::key &x, size_t N)
{
- std::reverse(k.bytes, k.bytes + sizeof(k));
- return k;
+ return rct::keyV(N, x);
}
-/* Compute the inverse of a scalar, the stupid way */
-static rct::key invert(const rct::key &x)
+static rct::key sm(rct::key y, int n, const rct::key &x)
{
- rct::key inv;
-
- BN_CTX *ctx = BN_CTX_new();
- BIGNUM *X = BN_new();
- BIGNUM *L = BN_new();
- BIGNUM *I = BN_new();
-
- BN_bin2bn(switch_endianness(x).bytes, sizeof(rct::key), X);
- BN_bin2bn(switch_endianness(rct::curveOrder()).bytes, sizeof(rct::key), L);
-
- CHECK_AND_ASSERT_THROW_MES(BN_mod_inverse(I, X, L, ctx), "Failed to invert");
+ while (n--)
+ sc_mul(y.bytes, y.bytes, y.bytes);
+ sc_mul(y.bytes, y.bytes, x.bytes);
+ return y;
+}
- const int len = BN_num_bytes(I);
- CHECK_AND_ASSERT_THROW_MES((size_t)len <= sizeof(rct::key), "Invalid number length");
- inv = rct::zero();
- BN_bn2bin(I, inv.bytes);
- std::reverse(inv.bytes, inv.bytes + len);
+/* Compute the inverse of a scalar, the clever way */
+static rct::key invert(const rct::key &x)
+{
+ rct::key _1, _10, _100, _11, _101, _111, _1001, _1011, _1111;
+
+ _1 = x;
+ sc_mul(_10.bytes, _1.bytes, _1.bytes);
+ sc_mul(_100.bytes, _10.bytes, _10.bytes);
+ sc_mul(_11.bytes, _10.bytes, _1.bytes);
+ sc_mul(_101.bytes, _10.bytes, _11.bytes);
+ sc_mul(_111.bytes, _10.bytes, _101.bytes);
+ sc_mul(_1001.bytes, _10.bytes, _111.bytes);
+ sc_mul(_1011.bytes, _10.bytes, _1001.bytes);
+ sc_mul(_1111.bytes, _100.bytes, _1011.bytes);
- BN_free(I);
- BN_free(L);
- BN_free(X);
- BN_CTX_free(ctx);
+ rct::key inv;
+ sc_mul(inv.bytes, _1111.bytes, _1.bytes);
+
+ inv = sm(inv, 123 + 3, _101);
+ inv = sm(inv, 2 + 2, _11);
+ inv = sm(inv, 1 + 4, _1111);
+ inv = sm(inv, 1 + 4, _1111);
+ inv = sm(inv, 4, _1001);
+ inv = sm(inv, 2, _11);
+ inv = sm(inv, 1 + 4, _1111);
+ inv = sm(inv, 1 + 3, _101);
+ inv = sm(inv, 3 + 3, _101);
+ inv = sm(inv, 3, _111);
+ inv = sm(inv, 1 + 4, _1111);
+ inv = sm(inv, 2 + 3, _111);
+ inv = sm(inv, 2 + 2, _11);
+ inv = sm(inv, 1 + 4, _1011);
+ inv = sm(inv, 2 + 4, _1011);
+ inv = sm(inv, 6 + 4, _1001);
+ inv = sm(inv, 2 + 2, _11);
+ inv = sm(inv, 3 + 2, _11);
+ inv = sm(inv, 3 + 2, _11);
+ inv = sm(inv, 1 + 4, _1001);
+ inv = sm(inv, 1 + 3, _111);
+ inv = sm(inv, 2 + 4, _1111);
+ inv = sm(inv, 1 + 4, _1011);
+ inv = sm(inv, 3, _101);
+ inv = sm(inv, 2 + 4, _1111);
+ inv = sm(inv, 3, _101);
+ inv = sm(inv, 1 + 2, _11);
#ifdef DEBUG_BP
rct::key tmp;
@@ -283,6 +371,34 @@ static rct::key invert(const rct::key &x)
return inv;
}
+static rct::keyV invert(rct::keyV x)
+{
+ rct::keyV scratch;
+ scratch.reserve(x.size());
+
+ rct::key acc = rct::identity();
+ for (size_t n = 0; n < x.size(); ++n)
+ {
+ scratch.push_back(acc);
+ if (n == 0)
+ acc = x[0];
+ else
+ sc_mul(acc.bytes, acc.bytes, x[n].bytes);
+ }
+
+ acc = invert(acc);
+
+ rct::key tmp;
+ for (int i = x.size(); i-- > 0; )
+ {
+ sc_mul(tmp.bytes, acc.bytes, x[i].bytes);
+ sc_mul(x[i].bytes, acc.bytes, scratch[i].bytes);
+ acc = tmp;
+ }
+
+ return x;
+}
+
/* Compute the slice of a vector */
static rct::keyV slice(const rct::keyV &a, size_t start, size_t stop)
{
@@ -333,147 +449,207 @@ static rct::key hash_cache_mash(rct::key &hash_cache, const rct::key &mash0, con
/* Given a value v (0..2^N-1) and a mask gamma, construct a range proof */
Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma)
{
+ return bulletproof_PROVE(rct::keyV(1, sv), rct::keyV(1, gamma));
+}
+
+Bulletproof bulletproof_PROVE(uint64_t v, const rct::key &gamma)
+{
+ return bulletproof_PROVE(std::vector<uint64_t>(1, v), rct::keyV(1, gamma));
+}
+
+/* Given a set of values v (0..2^N-1) and masks gamma, construct a range proof */
+Bulletproof bulletproof_PROVE(const rct::keyV &sv, const rct::keyV &gamma)
+{
+ CHECK_AND_ASSERT_THROW_MES(sv.size() == gamma.size(), "Incompatible sizes of sv and gamma");
+ CHECK_AND_ASSERT_THROW_MES(!sv.empty(), "sv is empty");
+ for (const rct::key &sve: sv)
+ CHECK_AND_ASSERT_THROW_MES(is_reduced(sve), "Invalid sv input");
+ for (const rct::key &g: gamma)
+ CHECK_AND_ASSERT_THROW_MES(is_reduced(g), "Invalid gamma input");
+
init_exponents();
PERF_TIMER_UNIT(PROVE, 1000000);
constexpr size_t logN = 6; // log2(64)
constexpr size_t N = 1<<logN;
-
- rct::key V;
- rct::keyV aL(N), aR(N);
+ size_t M, logM;
+ for (logM = 0; (M = 1<<logM) <= maxM && M < sv.size(); ++logM);
+ CHECK_AND_ASSERT_THROW_MES(M <= maxM, "sv/gamma are too large");
+ const size_t logMN = logM + logN;
+ const size_t MN = M * N;
+
+ rct::keyV V(sv.size());
+ rct::keyV aL(MN), aR(MN);
+ rct::keyV aL8(MN), aR8(MN);
+ rct::key tmp, tmp2;
PERF_TIMER_START_BP(PROVE_v);
- rct::addKeys2(V, gamma, sv, rct::H);
- PERF_TIMER_STOP(PROVE_v);
+ for (size_t i = 0; i < sv.size(); ++i)
+ {
+ rct::key gamma8, sv8;
+ sc_mul(gamma8.bytes, gamma[i].bytes, INV_EIGHT.bytes);
+ sc_mul(sv8.bytes, sv[i].bytes, INV_EIGHT.bytes);
+ rct::addKeys2(V[i], gamma8, sv8, rct::H);
+ }
+ PERF_TIMER_STOP_BP(PROVE_v);
PERF_TIMER_START_BP(PROVE_aLaR);
- for (size_t i = N; i-- > 0; )
+ for (size_t j = 0; j < M; ++j)
{
- if (sv[i/8] & (((uint64_t)1)<<(i%8)))
- {
- aL[i] = rct::identity();
- }
- else
+ for (size_t i = N; i-- > 0; )
{
- aL[i] = rct::zero();
+ if (j < sv.size() && (sv[j][i/8] & (((uint64_t)1)<<(i%8))))
+ {
+ aL[j*N+i] = rct::identity();
+ aL8[j*N+i] = INV_EIGHT;
+ aR[j*N+i] = aR8[j*N+i] = rct::zero();
+ }
+ else
+ {
+ aL[j*N+i] = aL8[j*N+i] = rct::zero();
+ aR[j*N+i] = MINUS_ONE;
+ aR8[j*N+i] = MINUS_INV_EIGHT;
+ }
}
- sc_sub(aR[i].bytes, aL[i].bytes, rct::identity().bytes);
}
- PERF_TIMER_STOP(PROVE_aLaR);
-
- rct::key hash_cache = rct::hash_to_scalar(V);
+ PERF_TIMER_STOP_BP(PROVE_aLaR);
// DEBUG: Test to ensure this recovers the value
#ifdef DEBUG_BP
- uint64_t test_aL = 0, test_aR = 0;
- for (size_t i = 0; i < N; ++i)
- {
- if (aL[i] == rct::identity())
- test_aL += ((uint64_t)1)<<i;
- if (aR[i] == rct::zero())
- test_aR += ((uint64_t)1)<<i;
- }
- uint64_t v_test = 0;
- for (int n = 0; n < 8; ++n) v_test |= (((uint64_t)sv[n]) << (8*n));
- CHECK_AND_ASSERT_THROW_MES(test_aL == v_test, "test_aL failed");
- CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed");
+ for (size_t j = 0; j < M; ++j)
+ {
+ uint64_t test_aL = 0, test_aR = 0;
+ for (size_t i = 0; i < N; ++i)
+ {
+ if (aL[j*N+i] == rct::identity())
+ test_aL += ((uint64_t)1)<<i;
+ if (aR[j*N+i] == rct::zero())
+ test_aR += ((uint64_t)1)<<i;
+ }
+ uint64_t v_test = 0;
+ if (j < sv.size())
+ for (int n = 0; n < 8; ++n) v_test |= (((uint64_t)sv[j][n]) << (8*n));
+ CHECK_AND_ASSERT_THROW_MES(test_aL == v_test, "test_aL failed");
+ CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed");
+ }
#endif
+try_again:
+ rct::key hash_cache = rct::hash_to_scalar(V);
+
PERF_TIMER_START_BP(PROVE_step1);
// PAPER LINES 38-39
rct::key alpha = rct::skGen();
- rct::key ve = vector_exponent(aL, aR);
+ rct::key ve = vector_exponent(aL8, aR8);
rct::key A;
- rct::addKeys(A, ve, rct::scalarmultBase(alpha));
+ sc_mul(tmp.bytes, alpha.bytes, INV_EIGHT.bytes);
+ rct::addKeys(A, ve, rct::scalarmultBase(tmp));
// PAPER LINES 40-42
- rct::keyV sL = rct::skvGen(N), sR = rct::skvGen(N);
+ rct::keyV sL = rct::skvGen(MN), sR = rct::skvGen(MN);
rct::key rho = rct::skGen();
ve = vector_exponent(sL, sR);
rct::key S;
rct::addKeys(S, ve, rct::scalarmultBase(rho));
+ S = rct::scalarmultKey(S, INV_EIGHT);
// PAPER LINES 43-45
rct::key y = hash_cache_mash(hash_cache, A, S);
+ if (y == rct::zero())
+ {
+ PERF_TIMER_STOP_BP(PROVE_step1);
+ MINFO("y is 0, trying again");
+ goto try_again;
+ }
rct::key z = hash_cache = rct::hash_to_scalar(y);
+ if (z == rct::zero())
+ {
+ PERF_TIMER_STOP_BP(PROVE_step1);
+ MINFO("z is 0, trying again");
+ goto try_again;
+ }
- // Polynomial construction before PAPER LINE 46
- rct::key t0 = rct::zero();
- rct::key t1 = rct::zero();
- rct::key t2 = rct::zero();
-
- const auto yN = vector_powers(y, N);
-
- rct::key ip1y = inner_product(oneN, yN);
- rct::key tmp;
- sc_muladd(t0.bytes, z.bytes, ip1y.bytes, t0.bytes);
+ // Polynomial construction by coefficients
+ rct::keyV l0 = vector_subtract(aL, z);
+ const rct::keyV &l1 = sL;
- rct::key zsq;
- sc_mul(zsq.bytes, z.bytes, z.bytes);
- sc_muladd(t0.bytes, zsq.bytes, sv.bytes, t0.bytes);
+ // This computes the ugly sum/concatenation from PAPER LINE 65
+ rct::keyV zero_twos(MN);
+ const rct::keyV zpow = vector_powers(z, M+2);
+ for (size_t i = 0; i < MN; ++i)
+ {
+ zero_twos[i] = rct::zero();
+ for (size_t j = 1; j <= M; ++j)
+ {
+ if (i >= (j-1)*N && i < j*N)
+ {
+ CHECK_AND_ASSERT_THROW_MES(1+j < zpow.size(), "invalid zpow index");
+ CHECK_AND_ASSERT_THROW_MES(i-(j-1)*N < twoN.size(), "invalid twoN index");
+ sc_muladd(zero_twos[i].bytes, zpow[1+j].bytes, twoN[i-(j-1)*N].bytes, zero_twos[i].bytes);
+ }
+ }
+ }
- rct::key k = rct::zero();
- sc_mulsub(k.bytes, zsq.bytes, ip1y.bytes, k.bytes);
+ rct::keyV r0 = vector_add(aR, z);
+ const auto yMN = vector_powers(y, MN);
+ r0 = hadamard(r0, yMN);
+ r0 = vector_add(r0, zero_twos);
+ rct::keyV r1 = hadamard(yMN, sR);
- rct::key zcu;
- sc_mul(zcu.bytes, zsq.bytes, z.bytes);
- sc_mulsub(k.bytes, zcu.bytes, ip12.bytes, k.bytes);
- sc_add(t0.bytes, t0.bytes, k.bytes);
+ // Polynomial construction before PAPER LINE 46
+ rct::key t1_1 = inner_product(l0, r1);
+ rct::key t1_2 = inner_product(l1, r0);
+ rct::key t1;
+ sc_add(t1.bytes, t1_1.bytes, t1_2.bytes);
+ rct::key t2 = inner_product(l1, r1);
- // DEBUG: Test the value of t0 has the correct form
-#ifdef DEBUG_BP
- rct::key test_t0 = rct::zero();
- rct::key iph = inner_product(aL, hadamard(aR, yN));
- sc_add(test_t0.bytes, test_t0.bytes, iph.bytes);
- rct::key ips = inner_product(vector_subtract(aL, aR), yN);
- sc_muladd(test_t0.bytes, z.bytes, ips.bytes, test_t0.bytes);
- rct::key ipt = inner_product(twoN, aL);
- sc_muladd(test_t0.bytes, zsq.bytes, ipt.bytes, test_t0.bytes);
- sc_add(test_t0.bytes, test_t0.bytes, k.bytes);
- CHECK_AND_ASSERT_THROW_MES(t0 == test_t0, "t0 check failed");
-#endif
- PERF_TIMER_STOP(PROVE_step1);
+ PERF_TIMER_STOP_BP(PROVE_step1);
PERF_TIMER_START_BP(PROVE_step2);
- const auto HyNsR = hadamard(yN, sR);
- const auto vpIz = vector_scalar(oneN, z);
- const auto vp2zsq = vector_scalar(twoN, zsq);
- const auto aL_vpIz = vector_subtract(aL, vpIz);
- const auto aR_vpIz = vector_add(aR, vpIz);
-
- rct::key ip1 = inner_product(aL_vpIz, HyNsR);
- sc_add(t1.bytes, t1.bytes, ip1.bytes);
-
- rct::key ip2 = inner_product(sL, vector_add(hadamard(yN, aR_vpIz), vp2zsq));
- sc_add(t1.bytes, t1.bytes, ip2.bytes);
-
- rct::key ip3 = inner_product(sL, HyNsR);
- sc_add(t2.bytes, t2.bytes, ip3.bytes);
-
// PAPER LINES 47-48
rct::key tau1 = rct::skGen(), tau2 = rct::skGen();
- rct::key T1 = rct::addKeys(rct::scalarmultKey(rct::H, t1), rct::scalarmultBase(tau1));
- rct::key T2 = rct::addKeys(rct::scalarmultKey(rct::H, t2), rct::scalarmultBase(tau2));
+ rct::key T1, T2;
+ ge_p3 p3;
+ sc_mul(tmp.bytes, t1.bytes, INV_EIGHT.bytes);
+ sc_mul(tmp2.bytes, tau1.bytes, INV_EIGHT.bytes);
+ ge_double_scalarmult_base_vartime_p3(&p3, tmp.bytes, &ge_p3_H, tmp2.bytes);
+ ge_p3_tobytes(T1.bytes, &p3);
+ sc_mul(tmp.bytes, t2.bytes, INV_EIGHT.bytes);
+ sc_mul(tmp2.bytes, tau2.bytes, INV_EIGHT.bytes);
+ ge_double_scalarmult_base_vartime_p3(&p3, tmp.bytes, &ge_p3_H, tmp2.bytes);
+ ge_p3_tobytes(T2.bytes, &p3);
// PAPER LINES 49-51
rct::key x = hash_cache_mash(hash_cache, z, T1, T2);
+ if (x == rct::zero())
+ {
+ PERF_TIMER_STOP_BP(PROVE_step2);
+ MINFO("x is 0, trying again");
+ goto try_again;
+ }
// PAPER LINES 52-53
- rct::key taux = rct::zero();
+ rct::key taux;
sc_mul(taux.bytes, tau1.bytes, x.bytes);
rct::key xsq;
sc_mul(xsq.bytes, x.bytes, x.bytes);
sc_muladd(taux.bytes, tau2.bytes, xsq.bytes, taux.bytes);
- sc_muladd(taux.bytes, gamma.bytes, zsq.bytes, taux.bytes);
+ for (size_t j = 1; j <= sv.size(); ++j)
+ {
+ CHECK_AND_ASSERT_THROW_MES(j+1 < zpow.size(), "invalid zpow index");
+ sc_muladd(taux.bytes, zpow[j+1].bytes, gamma[j-1].bytes, taux.bytes);
+ }
rct::key mu;
sc_muladd(mu.bytes, x.bytes, rho.bytes, alpha.bytes);
// PAPER LINES 54-57
- rct::keyV l = vector_add(aL_vpIz, vector_scalar(sL, x));
- rct::keyV r = vector_add(hadamard(yN, vector_add(aR_vpIz, vector_scalar(sR, x))), vp2zsq);
- PERF_TIMER_STOP(PROVE_step2);
+ rct::keyV l = l0;
+ l = vector_add(l, vector_scalar(l1, x));
+ rct::keyV r = r0;
+ r = vector_add(r, vector_scalar(r1, x));
+ PERF_TIMER_STOP_BP(PROVE_step2);
PERF_TIMER_START_BP(PROVE_step3);
rct::key t = inner_product(l, r);
@@ -481,6 +657,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma)
// DEBUG: Test if the l and r vectors match the polynomial forms
#ifdef DEBUG_BP
rct::key test_t;
+ const rct::key t0 = inner_product(l0, r0);
sc_muladd(test_t.bytes, t1.bytes, x.bytes, t0.bytes);
sc_muladd(test_t.bytes, t2.bytes, xsq.bytes, test_t.bytes);
CHECK_AND_ASSERT_THROW_MES(test_t == t, "test_t check failed");
@@ -488,265 +665,407 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma)
// PAPER LINES 32-33
rct::key x_ip = hash_cache_mash(hash_cache, x, taux, mu, t);
+ if (x_ip == rct::zero())
+ {
+ PERF_TIMER_STOP_BP(PROVE_step3);
+ MINFO("x_ip is 0, trying again");
+ goto try_again;
+ }
// These are used in the inner product rounds
- size_t nprime = N;
- rct::keyV Gprime(N);
- rct::keyV Hprime(N);
- rct::keyV aprime(N);
- rct::keyV bprime(N);
+ size_t nprime = MN;
+ std::vector<ge_p3> Gprime(MN);
+ std::vector<ge_p3> Hprime(MN);
+ rct::keyV aprime(MN);
+ rct::keyV bprime(MN);
const rct::key yinv = invert(y);
- rct::key yinvpow = rct::identity();
- for (size_t i = 0; i < N; ++i)
+ rct::keyV yinvpow(MN);
+ yinvpow[0] = rct::identity();
+ yinvpow[1] = yinv;
+ for (size_t i = 0; i < MN; ++i)
{
- Gprime[i] = Gi[i];
- Hprime[i] = scalarmultKey(Hi[i], yinvpow);
- sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes);
+ Gprime[i] = Gi_p3[i];
+ Hprime[i] = Hi_p3[i];
+ if (i > 1)
+ sc_mul(yinvpow[i].bytes, yinvpow[i-1].bytes, yinv.bytes);
aprime[i] = l[i];
bprime[i] = r[i];
}
- rct::keyV L(logN);
- rct::keyV R(logN);
+ rct::keyV L(logMN);
+ rct::keyV R(logMN);
int round = 0;
- rct::keyV w(logN); // this is the challenge x in the inner product protocol
- PERF_TIMER_STOP(PROVE_step3);
+ rct::keyV w(logMN); // this is the challenge x in the inner product protocol
+ PERF_TIMER_STOP_BP(PROVE_step3);
PERF_TIMER_START_BP(PROVE_step4);
// PAPER LINE 13
+ const rct::keyV *scale = &yinvpow;
while (nprime > 1)
{
// PAPER LINE 15
nprime /= 2;
// PAPER LINES 16-17
+ PERF_TIMER_START_BP(PROVE_inner_product);
rct::key cL = inner_product(slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size()));
rct::key cR = inner_product(slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime));
+ PERF_TIMER_STOP_BP(PROVE_inner_product);
// PAPER LINES 18-19
- L[round] = vector_exponent_custom(slice(Gprime, nprime, Gprime.size()), slice(Hprime, 0, nprime), slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size()));
+ PERF_TIMER_START_BP(PROVE_LR);
sc_mul(tmp.bytes, cL.bytes, x_ip.bytes);
- rct::addKeys(L[round], L[round], rct::scalarmultKey(rct::H, tmp));
- R[round] = vector_exponent_custom(slice(Gprime, 0, nprime), slice(Hprime, nprime, Hprime.size()), slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime));
+ L[round] = cross_vector_exponent8(nprime, Gprime, nprime, Hprime, 0, aprime, 0, bprime, nprime, scale, &ge_p3_H, &tmp);
sc_mul(tmp.bytes, cR.bytes, x_ip.bytes);
- rct::addKeys(R[round], R[round], rct::scalarmultKey(rct::H, tmp));
+ R[round] = cross_vector_exponent8(nprime, Gprime, 0, Hprime, nprime, aprime, nprime, bprime, 0, scale, &ge_p3_H, &tmp);
+ PERF_TIMER_STOP_BP(PROVE_LR);
// PAPER LINES 21-22
w[round] = hash_cache_mash(hash_cache, L[round], R[round]);
+ if (w[round] == rct::zero())
+ {
+ PERF_TIMER_STOP_BP(PROVE_step4);
+ MINFO("w[round] is 0, trying again");
+ goto try_again;
+ }
// PAPER LINES 24-25
const rct::key winv = invert(w[round]);
- Gprime = hadamard2(vector_scalar2(slice(Gprime, 0, nprime), winv), vector_scalar2(slice(Gprime, nprime, Gprime.size()), w[round]));
- Hprime = hadamard2(vector_scalar2(slice(Hprime, 0, nprime), w[round]), vector_scalar2(slice(Hprime, nprime, Hprime.size()), winv));
+ if (nprime > 1)
+ {
+ PERF_TIMER_START_BP(PROVE_hadamard2);
+ hadamard_fold(Gprime, NULL, winv, w[round]);
+ hadamard_fold(Hprime, scale, w[round], winv);
+ PERF_TIMER_STOP_BP(PROVE_hadamard2);
+ }
// PAPER LINES 28-29
+ PERF_TIMER_START_BP(PROVE_prime);
aprime = vector_add(vector_scalar(slice(aprime, 0, nprime), w[round]), vector_scalar(slice(aprime, nprime, aprime.size()), winv));
bprime = vector_add(vector_scalar(slice(bprime, 0, nprime), winv), vector_scalar(slice(bprime, nprime, bprime.size()), w[round]));
+ PERF_TIMER_STOP_BP(PROVE_prime);
+ scale = NULL;
++round;
}
- PERF_TIMER_STOP(PROVE_step4);
+ PERF_TIMER_STOP_BP(PROVE_step4);
// PAPER LINE 58 (with inclusions from PAPER LINE 8 and PAPER LINE 20)
- return Bulletproof(V, A, S, T1, T2, taux, mu, L, R, aprime[0], bprime[0], t);
+ return Bulletproof(std::move(V), A, S, T1, T2, taux, mu, std::move(L), std::move(R), aprime[0], bprime[0], t);
}
-Bulletproof bulletproof_PROVE(uint64_t v, const rct::key &gamma)
+Bulletproof bulletproof_PROVE(const std::vector<uint64_t> &v, const rct::keyV &gamma)
{
+ CHECK_AND_ASSERT_THROW_MES(v.size() == gamma.size(), "Incompatible sizes of v and gamma");
+
// vG + gammaH
PERF_TIMER_START_BP(PROVE_v);
- rct::key sv = rct::zero();
- sv.bytes[0] = v & 255;
- sv.bytes[1] = (v >> 8) & 255;
- sv.bytes[2] = (v >> 16) & 255;
- sv.bytes[3] = (v >> 24) & 255;
- sv.bytes[4] = (v >> 32) & 255;
- sv.bytes[5] = (v >> 40) & 255;
- sv.bytes[6] = (v >> 48) & 255;
- sv.bytes[7] = (v >> 56) & 255;
- PERF_TIMER_STOP(PROVE_v);
+ rct::keyV sv(v.size());
+ for (size_t i = 0; i < v.size(); ++i)
+ {
+ sv[i] = rct::zero();
+ sv[i].bytes[0] = v[i] & 255;
+ sv[i].bytes[1] = (v[i] >> 8) & 255;
+ sv[i].bytes[2] = (v[i] >> 16) & 255;
+ sv[i].bytes[3] = (v[i] >> 24) & 255;
+ sv[i].bytes[4] = (v[i] >> 32) & 255;
+ sv[i].bytes[5] = (v[i] >> 40) & 255;
+ sv[i].bytes[6] = (v[i] >> 48) & 255;
+ sv[i].bytes[7] = (v[i] >> 56) & 255;
+ }
+ PERF_TIMER_STOP_BP(PROVE_v);
return bulletproof_PROVE(sv, gamma);
}
+struct proof_data_t
+{
+ rct::key x, y, z, x_ip;
+ std::vector<rct::key> w;
+ size_t logM, inv_offset;
+};
+
/* Given a range proof, determine if it is valid */
-bool bulletproof_VERIFY(const Bulletproof &proof)
+bool bulletproof_VERIFY(const std::vector<const Bulletproof*> &proofs)
{
init_exponents();
- CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "V does not have exactly one element");
- CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes");
- CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof");
- CHECK_AND_ASSERT_MES(proof.L.size() == 6, false, "Proof is not for 64 bits");
-
- const size_t logN = proof.L.size();
- const size_t N = 1 << logN;
-
- // Reconstruct the challenges
PERF_TIMER_START_BP(VERIFY);
- PERF_TIMER_START_BP(VERIFY_start);
- rct::key hash_cache = rct::hash_to_scalar(proof.V[0]);
- rct::key y = hash_cache_mash(hash_cache, proof.A, proof.S);
- rct::key z = hash_cache = rct::hash_to_scalar(y);
- rct::key x = hash_cache_mash(hash_cache, z, proof.T1, proof.T2);
- PERF_TIMER_STOP(VERIFY_start);
-
- PERF_TIMER_START_BP(VERIFY_line_60);
- // Reconstruct the challenges
- rct::key x_ip = hash_cache_mash(hash_cache, x, proof.taux, proof.mu, proof.t);
- PERF_TIMER_STOP(VERIFY_line_60);
-
- PERF_TIMER_START_BP(VERIFY_line_61);
- // PAPER LINE 61
- rct::key L61Left = rct::addKeys(rct::scalarmultBase(proof.taux), rct::scalarmultKey(rct::H, proof.t));
-
- rct::key k = rct::zero();
- const auto yN = vector_powers(y, N);
- rct::key ip1y = inner_product(oneN, yN);
- rct::key zsq;
- sc_mul(zsq.bytes, z.bytes, z.bytes);
- rct::key tmp, tmp2;
- sc_mulsub(k.bytes, zsq.bytes, ip1y.bytes, k.bytes);
- rct::key zcu;
- sc_mul(zcu.bytes, zsq.bytes, z.bytes);
- sc_mulsub(k.bytes, zcu.bytes, ip12.bytes, k.bytes);
- PERF_TIMER_STOP(VERIFY_line_61);
-
- PERF_TIMER_START_BP(VERIFY_line_61rl);
- sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes);
- rct::key L61Right = rct::scalarmultKey(rct::H, tmp);
- CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "proof.V does not have exactly one element");
- tmp = rct::scalarmultKey(proof.V[0], zsq);
- rct::addKeys(L61Right, L61Right, tmp);
-
- tmp = rct::scalarmultKey(proof.T1, x);
- rct::addKeys(L61Right, L61Right, tmp);
-
- rct::key xsq;
- sc_mul(xsq.bytes, x.bytes, x.bytes);
- tmp = rct::scalarmultKey(proof.T2, xsq);
- rct::addKeys(L61Right, L61Right, tmp);
- PERF_TIMER_STOP(VERIFY_line_61rl);
+ const size_t logN = 6;
+ const size_t N = 1 << logN;
- if (!(L61Right == L61Left))
+ // sanity and figure out which proof is longest
+ size_t max_length = 0;
+ size_t nV = 0;
+ std::vector<proof_data_t> proof_data;
+ proof_data.reserve(proofs.size());
+ size_t inv_offset = 0;
+ std::vector<rct::key> to_invert;
+ to_invert.reserve(11 * sizeof(proofs));
+ for (const Bulletproof *p: proofs)
{
- MERROR("Verification failure at step 1");
- return false;
- }
-
- PERF_TIMER_START_BP(VERIFY_line_62);
- // PAPER LINE 62
- rct::key P = rct::addKeys(proof.A, rct::scalarmultKey(proof.S, x));
- PERF_TIMER_STOP(VERIFY_line_62);
-
- // Compute the number of rounds for the inner product
- const size_t rounds = proof.L.size();
- CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds");
+ const Bulletproof &proof = *p;
+
+ // check scalar range
+ CHECK_AND_ASSERT_MES(is_reduced(proof.taux), false, "Input scalar not in range");
+ CHECK_AND_ASSERT_MES(is_reduced(proof.mu), false, "Input scalar not in range");
+ CHECK_AND_ASSERT_MES(is_reduced(proof.a), false, "Input scalar not in range");
+ CHECK_AND_ASSERT_MES(is_reduced(proof.b), false, "Input scalar not in range");
+ CHECK_AND_ASSERT_MES(is_reduced(proof.t), false, "Input scalar not in range");
+
+ CHECK_AND_ASSERT_MES(proof.V.size() >= 1, false, "V does not have at least one element");
+ CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes");
+ CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof");
+
+ max_length = std::max(max_length, proof.L.size());
+ nV += proof.V.size();
+
+ // Reconstruct the challenges
+ PERF_TIMER_START_BP(VERIFY_start);
+ proof_data.resize(proof_data.size() + 1);
+ proof_data_t &pd = proof_data.back();
+ rct::key hash_cache = rct::hash_to_scalar(proof.V);
+ pd.y = hash_cache_mash(hash_cache, proof.A, proof.S);
+ CHECK_AND_ASSERT_MES(!(pd.y == rct::zero()), false, "y == 0");
+ pd.z = hash_cache = rct::hash_to_scalar(pd.y);
+ CHECK_AND_ASSERT_MES(!(pd.z == rct::zero()), false, "z == 0");
+ pd.x = hash_cache_mash(hash_cache, pd.z, proof.T1, proof.T2);
+ CHECK_AND_ASSERT_MES(!(pd.x == rct::zero()), false, "x == 0");
+ pd.x_ip = hash_cache_mash(hash_cache, pd.x, proof.taux, proof.mu, proof.t);
+ CHECK_AND_ASSERT_MES(!(pd.x_ip == rct::zero()), false, "x_ip == 0");
+ PERF_TIMER_STOP_BP(VERIFY_start);
+
+ size_t M;
+ for (pd.logM = 0; (M = 1<<pd.logM) <= maxM && M < proof.V.size(); ++pd.logM);
+ CHECK_AND_ASSERT_MES(proof.L.size() == 6+pd.logM, false, "Proof is not the expected size");
+
+ const size_t rounds = pd.logM+logN;
+ CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds");
+
+ PERF_TIMER_START_BP(VERIFY_line_21_22);
+ // PAPER LINES 21-22
+ // The inner product challenges are computed per round
+ pd.w.resize(rounds);
+ for (size_t i = 0; i < rounds; ++i)
+ {
+ pd.w[i] = hash_cache_mash(hash_cache, proof.L[i], proof.R[i]);
+ CHECK_AND_ASSERT_MES(!(pd.w[i] == rct::zero()), false, "w[i] == 0");
+ }
+ PERF_TIMER_STOP_BP(VERIFY_line_21_22);
- PERF_TIMER_START_BP(VERIFY_line_21_22);
- // PAPER LINES 21-22
- // The inner product challenges are computed per round
- rct::keyV w(rounds);
- for (size_t i = 0; i < rounds; ++i)
- {
- w[i] = hash_cache_mash(hash_cache, proof.L[i], proof.R[i]);
+ pd.inv_offset = inv_offset;
+ for (size_t i = 0; i < rounds; ++i)
+ to_invert.push_back(pd.w[i]);
+ to_invert.push_back(pd.y);
+ inv_offset += rounds + 1;
}
- PERF_TIMER_STOP(VERIFY_line_21_22);
+ CHECK_AND_ASSERT_MES(max_length < 32, false, "At least one proof is too large");
+ size_t maxMN = 1u << max_length;
- PERF_TIMER_START_BP(VERIFY_line_24_25);
- // Basically PAPER LINES 24-25
- // Compute the curvepoints from G[i] and H[i]
- rct::key inner_prod = rct::identity();
- rct::key yinvpow = rct::identity();
- rct::key ypow = rct::identity();
+ rct::key tmp;
- PERF_TIMER_START_BP(VERIFY_line_24_25_invert);
- const rct::key yinv = invert(y);
- rct::keyV winv(rounds);
- for (size_t i = 0; i < rounds; ++i)
- winv[i] = invert(w[i]);
- PERF_TIMER_STOP(VERIFY_line_24_25_invert);
+ std::vector<MultiexpData> multiexp_data;
+ multiexp_data.reserve(nV + (2 * (10/*logM*/ + logN) + 4) * proofs.size() + 2 * maxMN);
+ multiexp_data.resize(2 * maxMN);
- for (size_t i = 0; i < N; ++i)
+ PERF_TIMER_START_BP(VERIFY_line_24_25_invert);
+ const std::vector<rct::key> inverses = invert(to_invert);
+ PERF_TIMER_STOP_BP(VERIFY_line_24_25_invert);
+
+ // setup weighted aggregates
+ rct::key z1 = rct::zero();
+ rct::key z3 = rct::zero();
+ rct::keyV m_z4(maxMN, rct::zero()), m_z5(maxMN, rct::zero());
+ rct::key m_y0 = rct::zero(), y1 = rct::zero();
+ int proof_data_index = 0;
+ for (const Bulletproof *p: proofs)
{
- // Convert the index to binary IN REVERSE and construct the scalar exponent
- rct::key g_scalar = proof.a;
- rct::key h_scalar;
- sc_mul(h_scalar.bytes, proof.b.bytes, yinvpow.bytes);
+ const Bulletproof &proof = *p;
+ const proof_data_t &pd = proof_data[proof_data_index++];
+
+ CHECK_AND_ASSERT_MES(proof.L.size() == 6+pd.logM, false, "Proof is not the expected size");
+ const size_t M = 1 << pd.logM;
+ const size_t MN = M*N;
+ const rct::key weight_y = rct::skGen();
+ const rct::key weight_z = rct::skGen();
+
+ // pre-multiply some points by 8
+ rct::keyV proof8_V = proof.V; for (rct::key &k: proof8_V) k = rct::scalarmult8(k);
+ rct::keyV proof8_L = proof.L; for (rct::key &k: proof8_L) k = rct::scalarmult8(k);
+ rct::keyV proof8_R = proof.R; for (rct::key &k: proof8_R) k = rct::scalarmult8(k);
+ rct::key proof8_T1 = rct::scalarmult8(proof.T1);
+ rct::key proof8_T2 = rct::scalarmult8(proof.T2);
+ rct::key proof8_S = rct::scalarmult8(proof.S);
+ rct::key proof8_A = rct::scalarmult8(proof.A);
+
+ PERF_TIMER_START_BP(VERIFY_line_61);
+ // PAPER LINE 61
+ sc_mulsub(m_y0.bytes, proof.taux.bytes, weight_y.bytes, m_y0.bytes);
+
+ const rct::keyV zpow = vector_powers(pd.z, M+3);
+
+ rct::key k;
+ const rct::key ip1y = vector_power_sum(pd.y, MN);
+ sc_mulsub(k.bytes, zpow[2].bytes, ip1y.bytes, rct::zero().bytes);
+ for (size_t j = 1; j <= M; ++j)
+ {
+ CHECK_AND_ASSERT_MES(j+2 < zpow.size(), false, "invalid zpow index");
+ sc_mulsub(k.bytes, zpow[j+2].bytes, ip12.bytes, k.bytes);
+ }
+ PERF_TIMER_STOP_BP(VERIFY_line_61);
- for (size_t j = rounds; j-- > 0; )
+ PERF_TIMER_START_BP(VERIFY_line_61rl_new);
+ sc_muladd(tmp.bytes, pd.z.bytes, ip1y.bytes, k.bytes);
+ sc_sub(tmp.bytes, proof.t.bytes, tmp.bytes);
+ sc_muladd(y1.bytes, tmp.bytes, weight_y.bytes, y1.bytes);
+ for (size_t j = 0; j < proof8_V.size(); j++)
+ {
+ sc_mul(tmp.bytes, zpow[j+2].bytes, weight_y.bytes);
+ multiexp_data.emplace_back(tmp, proof8_V[j]);
+ }
+ sc_mul(tmp.bytes, pd.x.bytes, weight_y.bytes);
+ multiexp_data.emplace_back(tmp, proof8_T1);
+ rct::key xsq;
+ sc_mul(xsq.bytes, pd.x.bytes, pd.x.bytes);
+ sc_mul(tmp.bytes, xsq.bytes, weight_y.bytes);
+ multiexp_data.emplace_back(tmp, proof8_T2);
+ PERF_TIMER_STOP_BP(VERIFY_line_61rl_new);
+
+ PERF_TIMER_START_BP(VERIFY_line_62);
+ // PAPER LINE 62
+ multiexp_data.emplace_back(weight_z, proof8_A);
+ sc_mul(tmp.bytes, pd.x.bytes, weight_z.bytes);
+ multiexp_data.emplace_back(tmp, proof8_S);
+ PERF_TIMER_STOP_BP(VERIFY_line_62);
+
+ // Compute the number of rounds for the inner product
+ const size_t rounds = pd.logM+logN;
+ CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds");
+
+ PERF_TIMER_START_BP(VERIFY_line_24_25);
+ // Basically PAPER LINES 24-25
+ // Compute the curvepoints from G[i] and H[i]
+ rct::key yinvpow = rct::identity();
+ rct::key ypow = rct::identity();
+
+ const rct::key *winv = &inverses[pd.inv_offset];
+ const rct::key yinv = inverses[pd.inv_offset + rounds];
+
+ // precalc
+ PERF_TIMER_START_BP(VERIFY_line_24_25_precalc);
+ rct::keyV w_cache(1<<rounds);
+ w_cache[0] = winv[0];
+ w_cache[1] = pd.w[0];
+ for (size_t j = 1; j < rounds; ++j)
{
- size_t J = w.size() - j - 1;
+ const size_t slots = 1<<(j+1);
+ for (size_t s = slots; s-- > 0; --s)
+ {
+ sc_mul(w_cache[s].bytes, w_cache[s/2].bytes, pd.w[j].bytes);
+ sc_mul(w_cache[s-1].bytes, w_cache[s/2].bytes, winv[j].bytes);
+ }
+ }
+ PERF_TIMER_STOP_BP(VERIFY_line_24_25_precalc);
- if ((i & (((size_t)1)<<j)) == 0)
+ for (size_t i = 0; i < MN; ++i)
+ {
+ rct::key g_scalar = proof.a;
+ rct::key h_scalar;
+ if (i == 0)
+ h_scalar = proof.b;
+ else
+ sc_mul(h_scalar.bytes, proof.b.bytes, yinvpow.bytes);
+
+ // Convert the index to binary IN REVERSE and construct the scalar exponent
+ sc_mul(g_scalar.bytes, g_scalar.bytes, w_cache[i].bytes);
+ sc_mul(h_scalar.bytes, h_scalar.bytes, w_cache[(~i) & (MN-1)].bytes);
+
+ // Adjust the scalars using the exponents from PAPER LINE 62
+ sc_add(g_scalar.bytes, g_scalar.bytes, pd.z.bytes);
+ CHECK_AND_ASSERT_MES(2+i/N < zpow.size(), false, "invalid zpow index");
+ CHECK_AND_ASSERT_MES(i%N < twoN.size(), false, "invalid twoN index");
+ sc_mul(tmp.bytes, zpow[2+i/N].bytes, twoN[i%N].bytes);
+ if (i == 0)
{
- sc_mul(g_scalar.bytes, g_scalar.bytes, winv[J].bytes);
- sc_mul(h_scalar.bytes, h_scalar.bytes, w[J].bytes);
+ sc_add(tmp.bytes, tmp.bytes, pd.z.bytes);
+ sc_sub(h_scalar.bytes, h_scalar.bytes, tmp.bytes);
}
else
{
- sc_mul(g_scalar.bytes, g_scalar.bytes, w[J].bytes);
- sc_mul(h_scalar.bytes, h_scalar.bytes, winv[J].bytes);
+ sc_muladd(tmp.bytes, pd.z.bytes, ypow.bytes, tmp.bytes);
+ sc_mulsub(h_scalar.bytes, tmp.bytes, yinvpow.bytes, h_scalar.bytes);
}
- }
- // Adjust the scalars using the exponents from PAPER LINE 62
- sc_add(g_scalar.bytes, g_scalar.bytes, z.bytes);
- sc_mul(tmp.bytes, zsq.bytes, twoN[i].bytes);
- sc_muladd(tmp.bytes, z.bytes, ypow.bytes, tmp.bytes);
- sc_mulsub(h_scalar.bytes, tmp.bytes, yinvpow.bytes, h_scalar.bytes);
+ sc_mulsub(m_z4[i].bytes, g_scalar.bytes, weight_z.bytes, m_z4[i].bytes);
+ sc_mulsub(m_z5[i].bytes, h_scalar.bytes, weight_z.bytes, m_z5[i].bytes);
+
+ if (i == 0)
+ {
+ yinvpow = yinv;
+ ypow = pd.y;
+ }
+ else if (i != MN-1)
+ {
+ sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes);
+ sc_mul(ypow.bytes, ypow.bytes, pd.y.bytes);
+ }
+ }
- // Now compute the basepoint's scalar multiplication
- // Each of these could be written as a multiexp operation instead
- rct::addKeys3(tmp, g_scalar, Gprecomp[i], h_scalar, Hprecomp[i]);
- rct::addKeys(inner_prod, inner_prod, tmp);
+ PERF_TIMER_STOP_BP(VERIFY_line_24_25);
- if (i != N-1)
+ // PAPER LINE 26
+ PERF_TIMER_START_BP(VERIFY_line_26_new);
+ sc_muladd(z1.bytes, proof.mu.bytes, weight_z.bytes, z1.bytes);
+ for (size_t i = 0; i < rounds; ++i)
{
- sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes);
- sc_mul(ypow.bytes, ypow.bytes, y.bytes);
+ sc_mul(tmp.bytes, pd.w[i].bytes, pd.w[i].bytes);
+ sc_mul(tmp.bytes, tmp.bytes, weight_z.bytes);
+ multiexp_data.emplace_back(tmp, proof8_L[i]);
+ sc_mul(tmp.bytes, winv[i].bytes, winv[i].bytes);
+ sc_mul(tmp.bytes, tmp.bytes, weight_z.bytes);
+ multiexp_data.emplace_back(tmp, proof8_R[i]);
}
+ sc_mulsub(tmp.bytes, proof.a.bytes, proof.b.bytes, proof.t.bytes);
+ sc_mul(tmp.bytes, tmp.bytes, pd.x_ip.bytes);
+ sc_muladd(z3.bytes, tmp.bytes, weight_z.bytes, z3.bytes);
+ PERF_TIMER_STOP_BP(VERIFY_line_26_new);
}
- PERF_TIMER_STOP(VERIFY_line_24_25);
- PERF_TIMER_START_BP(VERIFY_line_26);
- // PAPER LINE 26
- rct::key pprime;
- sc_sub(tmp.bytes, rct::zero().bytes, proof.mu.bytes);
- rct::addKeys(pprime, P, rct::scalarmultBase(tmp));
-
- for (size_t i = 0; i < rounds; ++i)
+ // now check all proofs at once
+ PERF_TIMER_START_BP(VERIFY_step2_check);
+ sc_sub(tmp.bytes, m_y0.bytes, z1.bytes);
+ multiexp_data.emplace_back(tmp, rct::G);
+ sc_sub(tmp.bytes, z3.bytes, y1.bytes);
+ multiexp_data.emplace_back(tmp, rct::H);
+ for (size_t i = 0; i < maxMN; ++i)
{
- sc_mul(tmp.bytes, w[i].bytes, w[i].bytes);
- sc_mul(tmp2.bytes, winv[i].bytes, winv[i].bytes);
-#if 1
- ge_dsmp cacheL, cacheR;
- rct::precomp(cacheL, proof.L[i]);
- rct::precomp(cacheR, proof.R[i]);
- rct::addKeys3(tmp, tmp, cacheL, tmp2, cacheR);
- rct::addKeys(pprime, pprime, tmp);
-#else
- rct::addKeys(pprime, pprime, rct::scalarmultKey(proof.L[i], tmp));
- rct::addKeys(pprime, pprime, rct::scalarmultKey(proof.R[i], tmp2));
-#endif
+ multiexp_data[i * 2] = {m_z4[i], Gi_p3[i]};
+ multiexp_data[i * 2 + 1] = {m_z5[i], Hi_p3[i]};
}
- sc_mul(tmp.bytes, proof.t.bytes, x_ip.bytes);
- rct::addKeys(pprime, pprime, rct::scalarmultKey(rct::H, tmp));
- PERF_TIMER_STOP(VERIFY_line_26);
-
- PERF_TIMER_START_BP(VERIFY_step2_check);
- sc_mul(tmp.bytes, proof.a.bytes, proof.b.bytes);
- sc_mul(tmp.bytes, tmp.bytes, x_ip.bytes);
- tmp = rct::scalarmultKey(rct::H, tmp);
- rct::addKeys(tmp, tmp, inner_prod);
- PERF_TIMER_STOP(VERIFY_step2_check);
- if (!(pprime == tmp))
- {
- MERROR("Verification failure at step 2");
+ if (!(multiexp(multiexp_data, 2 * maxMN) == rct::identity()))
+ {
+ PERF_TIMER_STOP_BP(VERIFY_step2_check);
+ MERROR("Verification failure");
return false;
}
+ PERF_TIMER_STOP_BP(VERIFY_step2_check);
- PERF_TIMER_STOP(VERIFY);
+ PERF_TIMER_STOP_BP(VERIFY);
return true;
}
+bool bulletproof_VERIFY(const std::vector<Bulletproof> &proofs)
+{
+ std::vector<const Bulletproof*> proof_pointers;
+ for (const Bulletproof &proof: proofs)
+ proof_pointers.push_back(&proof);
+ return bulletproof_VERIFY(proof_pointers);
+}
+
+bool bulletproof_VERIFY(const Bulletproof &proof)
+{
+ std::vector<const Bulletproof*> proofs;
+ proofs.push_back(&proof);
+ return bulletproof_VERIFY(proofs);
+}
+
}