diff options
Diffstat (limited to 'src/ringct/bulletproofs.cc')
-rw-r--r-- | src/ringct/bulletproofs.cc | 877 |
1 files changed, 695 insertions, 182 deletions
diff --git a/src/ringct/bulletproofs.cc b/src/ringct/bulletproofs.cc index fd15ffbc4..abe4ef18d 100644 --- a/src/ringct/bulletproofs.cc +++ b/src/ringct/bulletproofs.cc @@ -30,14 +30,17 @@ #include <stdlib.h> #include <openssl/ssl.h> +#include <openssl/bn.h> #include <boost/thread/mutex.hpp> #include "misc_log_ex.h" #include "common/perf_timer.h" +#include "cryptonote_config.h" extern "C" { #include "crypto/crypto-ops.h" } #include "rctOps.h" +#include "multiexp.h" #include "bulletproofs.h" #undef MONERO_DEFAULT_LOG_CATEGORY @@ -47,27 +50,99 @@ extern "C" #define PERF_TIMER_START_BP(x) PERF_TIMER_START_UNIT(x, 1000000) +#define STRAUS_SIZE_LIMIT 128 +#define PIPPENGER_SIZE_LIMIT 0 + namespace rct { static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b); -static rct::keyV vector_powers(rct::key x, size_t n); +static rct::keyV vector_powers(const rct::key &x, size_t n); +static rct::keyV vector_dup(const rct::key &x, size_t n); static rct::key inner_product(const rct::keyV &a, const rct::keyV &b); static constexpr size_t maxN = 64; -static rct::key Hi[maxN], Gi[maxN]; -static ge_dsmp Gprecomp[64], Hprecomp[64]; +static constexpr size_t maxM = BULLETPROOF_MAX_OUTPUTS; +static rct::key Hi[maxN*maxM], Gi[maxN*maxM]; +static ge_p3 Hi_p3[maxN*maxM], Gi_p3[maxN*maxM]; +static std::shared_ptr<straus_cached_data> straus_HiGi_cache; +static std::shared_ptr<pippenger_cached_data> pippenger_HiGi_cache; static const rct::key TWO = { {0x02, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; -static const rct::keyV oneN = vector_powers(rct::identity(), maxN); +static const rct::key MINUS_ONE = { { 0xec, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 } }; +static const rct::key MINUS_INV_EIGHT = { { 0x74, 0xa4, 0x19, 0x7a, 0xf0, 0x7d, 0x0b, 0xf7, 0x05, 0xc2, 0xda, 0x25, 0x2b, 0x5c, 0x0b, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a } }; +static const rct::keyV oneN = vector_dup(rct::identity(), maxN); static const rct::keyV twoN = vector_powers(TWO, maxN); static const rct::key ip12 = inner_product(oneN, twoN); static boost::mutex init_mutex; +static inline rct::key multiexp(const std::vector<MultiexpData> &data, bool HiGi) +{ + if (HiGi) + { + static_assert(128 <= STRAUS_SIZE_LIMIT, "Straus in precalc mode can only be calculated till STRAUS_SIZE_LIMIT"); + return data.size() <= 128 ? straus(data, straus_HiGi_cache, 0) : pippenger(data, pippenger_HiGi_cache, get_pippenger_c(data.size())); + } + else + return data.size() <= 64 ? straus(data, NULL, 0) : pippenger(data, NULL, get_pippenger_c(data.size())); +} + +static bool is_reduced(const rct::key &scalar) +{ + rct::key reduced = scalar; + sc_reduce32(reduced.bytes); + return scalar == reduced; +} + +static void addKeys_acc_p3(ge_p3 *acc_p3, const rct::key &a, const rct::key &point) +{ + ge_p3 p3; + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, point.bytes) == 0, "ge_frombytes_vartime failed"); + ge_scalarmult_p3(&p3, a.bytes, &p3); + ge_cached cached; + ge_p3_to_cached(&cached, acc_p3); + ge_p1p1 p1; + ge_add(&p1, &p3, &cached); + ge_p1p1_to_p3(acc_p3, &p1); +} + +static void add_acc_p3(ge_p3 *acc_p3, const rct::key &point) +{ + ge_p3 p3; + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, point.bytes) == 0, "ge_frombytes_vartime failed"); + ge_cached cached; + ge_p3_to_cached(&cached, &p3); + ge_p1p1 p1; + ge_add(&p1, acc_p3, &cached); + ge_p1p1_to_p3(acc_p3, &p1); +} + +static void sub_acc_p3(ge_p3 *acc_p3, const rct::key &point) +{ + ge_p3 p3; + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, point.bytes) == 0, "ge_frombytes_vartime failed"); + ge_cached cached; + ge_p3_to_cached(&cached, &p3); + ge_p1p1 p1; + ge_sub(&p1, acc_p3, &cached); + ge_p1p1_to_p3(acc_p3, &p1); +} + +static rct::key scalarmultKey(const ge_p3 &P, const rct::key &a) +{ + ge_p2 R; + ge_scalarmult(&R, a.bytes, &P); + rct::key aP; + ge_tobytes(aP.bytes, &R); + return aP; +} + static rct::key get_exponent(const rct::key &base, size_t idx) { static const std::string salt("bulletproof"); std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + salt + tools::get_varint_data(idx); - return rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size()))); + const rct::key e = rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size()))); + CHECK_AND_ASSERT_THROW_MES(!(e == rct::identity()), "Exponent is point at infinity"); + return e; } static void init_exponents() @@ -77,13 +152,27 @@ static void init_exponents() static bool init_done = false; if (init_done) return; - for (size_t i = 0; i < maxN; ++i) + std::vector<MultiexpData> data; + for (size_t i = 0; i < maxN*maxM; ++i) { Hi[i] = get_exponent(rct::H, i * 2); - rct::precomp(Hprecomp[i], Hi[i]); + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&Hi_p3[i], Hi[i].bytes) == 0, "ge_frombytes_vartime failed"); Gi[i] = get_exponent(rct::H, i * 2 + 1); - rct::precomp(Gprecomp[i], Gi[i]); + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&Gi_p3[i], Gi[i].bytes) == 0, "ge_frombytes_vartime failed"); + + data.push_back({rct::zero(), Gi[i]}); + data.push_back({rct::zero(), Hi[i]}); } + + straus_HiGi_cache = straus_init_cache(data, STRAUS_SIZE_LIMIT); + pippenger_HiGi_cache = pippenger_init_cache(data, PIPPENGER_SIZE_LIMIT); + + MINFO("Hi/Gi cache size: " << (sizeof(Hi)+sizeof(Gi))/1024 << " kB"); + MINFO("Hi_p3/Gi_p3 cache size: " << (sizeof(Hi_p3)+sizeof(Gi_p3))/1024 << " kB"); + MINFO("Straus cache size: " << straus_get_cache_size(straus_HiGi_cache)/1024 << " kB"); + MINFO("Pippenger cache size: " << pippenger_get_cache_size(pippenger_HiGi_cache)/1024 << " kB"); + size_t cache_size = (sizeof(Hi)+sizeof(Hi_p3))*2 + straus_get_cache_size(straus_HiGi_cache) + pippenger_get_cache_size(pippenger_HiGi_cache); + MINFO("Total cache size: " << cache_size/1024 << "kB"); init_done = true; } @@ -91,15 +180,16 @@ static void init_exponents() static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); - CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN"); - rct::key res = rct::identity(); + CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN*maxM, "Incompatible sizes of a and maxN"); + + std::vector<MultiexpData> multiexp_data; + multiexp_data.reserve(a.size()*2); for (size_t i = 0; i < a.size(); ++i) { - rct::key term; - rct::addKeys3(term, a[i], Gprecomp[i], b[i], Hprecomp[i]); - rct::addKeys(res, res, term); + multiexp_data.emplace_back(a[i], Gi_p3[i]); + multiexp_data.emplace_back(b[i], Hi_p3[i]); } - return res; + return multiexp(multiexp_data, true); } /* Compute a custom vector-scalar commitment */ @@ -108,44 +198,24 @@ static rct::key vector_exponent_custom(const rct::keyV &A, const rct::keyV &B, c CHECK_AND_ASSERT_THROW_MES(A.size() == B.size(), "Incompatible sizes of A and B"); CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); CHECK_AND_ASSERT_THROW_MES(a.size() == A.size(), "Incompatible sizes of a and A"); - CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN"); - rct::key res = rct::identity(); + CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN*maxM, "Incompatible sizes of a and maxN"); + + std::vector<MultiexpData> multiexp_data; + multiexp_data.reserve(a.size()*2); for (size_t i = 0; i < a.size(); ++i) { - rct::key term; -#if 0 - // we happen to know where A and B might fall, so don't bother checking the rest - ge_dsmp *Acache = NULL, *Bcache = NULL; - ge_dsmp Acache_custom[1], Bcache_custom[1]; - if (Gi[i] == A[i]) - Acache = Gprecomp + i; - else if (i<32 && Gi[i+32] == A[i]) - Acache = Gprecomp + i + 32; - else - { - rct::precomp(Acache_custom[0], A[i]); - Acache = Acache_custom; - } - if (i == 0 && B[i] == Hi[0]) - Bcache = Hprecomp; - else - { - rct::precomp(Bcache_custom[0], B[i]); - Bcache = Bcache_custom; - } - rct::addKeys3(term, a[i], *Acache, b[i], *Bcache); -#else - ge_dsmp Acache, Bcache; - rct::precomp(Bcache, B[i]); - rct::addKeys3(term, a[i], A[i], b[i], Bcache); -#endif - rct::addKeys(res, res, term); + multiexp_data.resize(multiexp_data.size() + 1); + multiexp_data.back().scalar = a[i]; + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&multiexp_data.back().point, A[i].bytes) == 0, "ge_frombytes_vartime failed"); + multiexp_data.resize(multiexp_data.size() + 1); + multiexp_data.back().scalar = b[i]; + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&multiexp_data.back().point, B[i].bytes) == 0, "ge_frombytes_vartime failed"); } - return res; + return multiexp(multiexp_data, false); } /* Given a scalar, construct a vector of powers */ -static rct::keyV vector_powers(rct::key x, size_t n) +static rct::keyV vector_powers(const rct::key &x, size_t n) { rct::keyV res(n); if (n == 0) @@ -161,6 +231,24 @@ static rct::keyV vector_powers(rct::key x, size_t n) return res; } +/* Given a scalar, return the sum of its powers from 0 to n-1 */ +static rct::key vector_power_sum(const rct::key &x, size_t n) +{ + if (n == 0) + return rct::zero(); + rct::key res = rct::identity(); + if (n == 1) + return res; + rct::key prev = x; + for (size_t i = 1; i < n; ++i) + { + if (i > 1) + sc_mul(prev.bytes, prev.bytes, x.bytes); + sc_add(res.bytes, res.bytes, prev.bytes); + } + return res; +} + /* Given two scalar arrays, construct the inner product */ static rct::key inner_product(const rct::keyV &a, const rct::keyV &b) { @@ -232,6 +320,12 @@ static rct::keyV vector_scalar(const rct::keyV &a, const rct::key &x) return res; } +/* Create a vector from copies of a single value */ +static rct::keyV vector_dup(const rct::key &x, size_t N) +{ + return rct::keyV(N, x); +} + /* Exponentiate a curve vector by a scalar */ static rct::keyV vector_scalar2(const rct::keyV &a, const rct::key &x) { @@ -243,6 +337,17 @@ static rct::keyV vector_scalar2(const rct::keyV &a, const rct::key &x) return res; } +/* Get the sum of a vector's elements */ +static rct::key vector_sum(const rct::keyV &a) +{ + rct::key res = rct::zero(); + for (size_t i = 0; i < a.size(); ++i) + { + sc_add(res.bytes, res.bytes, a[i].bytes); + } + return res; +} + static rct::key switch_endianness(rct::key k) { std::reverse(k.bytes, k.bytes + sizeof(k)); @@ -345,6 +450,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) PERF_TIMER_START_BP(PROVE_v); rct::addKeys2(V, gamma, sv, rct::H); + V = rct::scalarmultKey(V, INV_EIGHT); PERF_TIMER_STOP(PROVE_v); PERF_TIMER_START_BP(PROVE_aLaR); @@ -380,12 +486,14 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed"); #endif +try_again: PERF_TIMER_START_BP(PROVE_step1); // PAPER LINES 38-39 rct::key alpha = rct::skGen(); rct::key ve = vector_exponent(aL, aR); rct::key A; rct::addKeys(A, ve, rct::scalarmultBase(alpha)); + A = rct::scalarmultKey(A, INV_EIGHT); // PAPER LINES 40-42 rct::keyV sL = rct::skvGen(N), sR = rct::skvGen(N); @@ -393,10 +501,23 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) ve = vector_exponent(sL, sR); rct::key S; rct::addKeys(S, ve, rct::scalarmultBase(rho)); + S = rct::scalarmultKey(S, INV_EIGHT); // PAPER LINES 43-45 rct::key y = hash_cache_mash(hash_cache, A, S); + if (y == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step1); + MINFO("y is 0, trying again"); + goto try_again; + } rct::key z = hash_cache = rct::hash_to_scalar(y); + if (z == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step1); + MINFO("z is 0, trying again"); + goto try_again; + } // Polynomial construction before PAPER LINE 46 rct::key t0 = rct::zero(); @@ -405,7 +526,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) const auto yN = vector_powers(y, N); - rct::key ip1y = inner_product(oneN, yN); + rct::key ip1y = vector_sum(yN); rct::key tmp; sc_muladd(t0.bytes, z.bytes, ip1y.bytes, t0.bytes); @@ -437,7 +558,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) PERF_TIMER_START_BP(PROVE_step2); const auto HyNsR = hadamard(yN, sR); - const auto vpIz = vector_scalar(oneN, z); + const auto vpIz = vector_dup(z, N); const auto vp2zsq = vector_scalar(twoN, zsq); const auto aL_vpIz = vector_subtract(aL, vpIz); const auto aR_vpIz = vector_add(aR, vpIz); @@ -454,11 +575,19 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) // PAPER LINES 47-48 rct::key tau1 = rct::skGen(), tau2 = rct::skGen(); - rct::key T1 = rct::addKeys(rct::scalarmultKey(rct::H, t1), rct::scalarmultBase(tau1)); - rct::key T2 = rct::addKeys(rct::scalarmultKey(rct::H, t2), rct::scalarmultBase(tau2)); + rct::key T1 = rct::addKeys(rct::scalarmultH(t1), rct::scalarmultBase(tau1)); + T1 = rct::scalarmultKey(T1, INV_EIGHT); + rct::key T2 = rct::addKeys(rct::scalarmultH(t2), rct::scalarmultBase(tau2)); + T2 = rct::scalarmultKey(T2, INV_EIGHT); // PAPER LINES 49-51 rct::key x = hash_cache_mash(hash_cache, z, T1, T2); + if (x == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step2); + MINFO("x is 0, trying again"); + goto try_again; + } // PAPER LINES 52-53 rct::key taux = rct::zero(); @@ -500,7 +629,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) for (size_t i = 0; i < N; ++i) { Gprime[i] = Gi[i]; - Hprime[i] = scalarmultKey(Hi[i], yinvpow); + Hprime[i] = scalarmultKey(Hi_p3[i], yinvpow); sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); aprime[i] = l[i]; bprime[i] = r[i]; @@ -525,13 +654,21 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) // PAPER LINES 18-19 L[round] = vector_exponent_custom(slice(Gprime, nprime, Gprime.size()), slice(Hprime, 0, nprime), slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size())); sc_mul(tmp.bytes, cL.bytes, x_ip.bytes); - rct::addKeys(L[round], L[round], rct::scalarmultKey(rct::H, tmp)); + rct::addKeys(L[round], L[round], rct::scalarmultH(tmp)); + L[round] = rct::scalarmultKey(L[round], INV_EIGHT); R[round] = vector_exponent_custom(slice(Gprime, 0, nprime), slice(Hprime, nprime, Hprime.size()), slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime)); sc_mul(tmp.bytes, cR.bytes, x_ip.bytes); - rct::addKeys(R[round], R[round], rct::scalarmultKey(rct::H, tmp)); + rct::addKeys(R[round], R[round], rct::scalarmultH(tmp)); + R[round] = rct::scalarmultKey(R[round], INV_EIGHT); // PAPER LINES 21-22 w[round] = hash_cache_mash(hash_cache, L[round], R[round]); + if (w[round] == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step4); + MINFO("w[round] is 0, trying again"); + goto try_again; + } // PAPER LINES 24-25 const rct::key winv = invert(w[round]); @@ -567,179 +704,540 @@ Bulletproof bulletproof_PROVE(uint64_t v, const rct::key &gamma) return bulletproof_PROVE(sv, gamma); } -/* Given a range proof, determine if it is valid */ -bool bulletproof_VERIFY(const Bulletproof &proof) +/* Given a set of values v (0..2^N-1) and masks gamma, construct a range proof */ +Bulletproof bulletproof_PROVE(const rct::keyV &sv, const rct::keyV &gamma) { + CHECK_AND_ASSERT_THROW_MES(sv.size() == gamma.size(), "Incompatible sizes of sv and gamma"); + CHECK_AND_ASSERT_THROW_MES(!sv.empty(), "sv is empty"); + for (const rct::key &sve: sv) + CHECK_AND_ASSERT_THROW_MES(is_reduced(sve), "Invalid sv input"); + for (const rct::key &g: gamma) + CHECK_AND_ASSERT_THROW_MES(is_reduced(g), "Invalid gamma input"); + init_exponents(); - CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "V does not have exactly one element"); - CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes"); - CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof"); - CHECK_AND_ASSERT_MES(proof.L.size() == 6, false, "Proof is not for 64 bits"); + PERF_TIMER_UNIT(PROVE, 1000000); - const size_t logN = proof.L.size(); - const size_t N = 1 << logN; + constexpr size_t logN = 6; // log2(64) + constexpr size_t N = 1<<logN; + size_t M, logM; + for (logM = 0; (M = 1<<logM) <= maxM && M < sv.size(); ++logM); + CHECK_AND_ASSERT_THROW_MES(M <= maxM, "sv/gamma are too large"); + const size_t logMN = logM + logN; + const size_t MN = M * N; + + rct::keyV V(sv.size()); + rct::keyV aL(MN), aR(MN); + rct::key tmp; - // Reconstruct the challenges - PERF_TIMER_START_BP(VERIFY); - PERF_TIMER_START_BP(VERIFY_start); - rct::key hash_cache = rct::hash_to_scalar(proof.V[0]); - rct::key y = hash_cache_mash(hash_cache, proof.A, proof.S); + PERF_TIMER_START_BP(PROVE_v); + for (size_t i = 0; i < sv.size(); ++i) + { + rct::addKeys2(V[i], gamma[i], sv[i], rct::H); + V[i] = rct::scalarmultKey(V[i], INV_EIGHT); + } + PERF_TIMER_STOP(PROVE_v); + + PERF_TIMER_START_BP(PROVE_aLaR); + for (size_t j = 0; j < M; ++j) + { + for (size_t i = N; i-- > 0; ) + { + if (j >= sv.size()) + { + aL[j*N+i] = rct::zero(); + } + else if (sv[j][i/8] & (((uint64_t)1)<<(i%8))) + { + aL[j*N+i] = rct::identity(); + } + else + { + aL[j*N+i] = rct::zero(); + } + sc_sub(aR[j*N+i].bytes, aL[j*N+i].bytes, rct::identity().bytes); + } + } + PERF_TIMER_STOP(PROVE_aLaR); + + // DEBUG: Test to ensure this recovers the value +#ifdef DEBUG_BP + for (size_t j = 0; j < M; ++j) + { + uint64_t test_aL = 0, test_aR = 0; + for (size_t i = 0; i < N; ++i) + { + if (aL[j*N+i] == rct::identity()) + test_aL += ((uint64_t)1)<<i; + if (aR[j*N+i] == rct::zero()) + test_aR += ((uint64_t)1)<<i; + } + uint64_t v_test = 0; + if (j < sv.size()) + for (int n = 0; n < 8; ++n) v_test |= (((uint64_t)sv[j][n]) << (8*n)); + CHECK_AND_ASSERT_THROW_MES(test_aL == v_test, "test_aL failed"); + CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed"); + } +#endif + +try_again: + rct::key hash_cache = rct::hash_to_scalar(V); + + PERF_TIMER_START_BP(PROVE_step1); + // PAPER LINES 38-39 + rct::key alpha = rct::skGen(); + rct::key ve = vector_exponent(aL, aR); + rct::key A; + rct::addKeys(A, ve, rct::scalarmultBase(alpha)); + A = rct::scalarmultKey(A, INV_EIGHT); + + // PAPER LINES 40-42 + rct::keyV sL = rct::skvGen(MN), sR = rct::skvGen(MN); + rct::key rho = rct::skGen(); + ve = vector_exponent(sL, sR); + rct::key S; + rct::addKeys(S, ve, rct::scalarmultBase(rho)); + S = rct::scalarmultKey(S, INV_EIGHT); + + // PAPER LINES 43-45 + rct::key y = hash_cache_mash(hash_cache, A, S); + if (y == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step1); + MINFO("y is 0, trying again"); + goto try_again; + } rct::key z = hash_cache = rct::hash_to_scalar(y); - rct::key x = hash_cache_mash(hash_cache, z, proof.T1, proof.T2); - PERF_TIMER_STOP(VERIFY_start); + if (z == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step1); + MINFO("z is 0, trying again"); + goto try_again; + } - PERF_TIMER_START_BP(VERIFY_line_60); - // Reconstruct the challenges - rct::key x_ip = hash_cache_mash(hash_cache, x, proof.taux, proof.mu, proof.t); - PERF_TIMER_STOP(VERIFY_line_60); + // Polynomial construction by coefficients + const auto zMN = vector_dup(z, MN); + rct::keyV l0 = vector_subtract(aL, zMN); + const rct::keyV &l1 = sL; - PERF_TIMER_START_BP(VERIFY_line_61); - // PAPER LINE 61 - rct::key L61Left = rct::addKeys(rct::scalarmultBase(proof.taux), rct::scalarmultKey(rct::H, proof.t)); + // This computes the ugly sum/concatenation from PAPER LINE 65 + rct::keyV zero_twos(MN); + const rct::keyV zpow = vector_powers(z, M+2); + for (size_t i = 0; i < MN; ++i) + { + zero_twos[i] = rct::zero(); + for (size_t j = 1; j <= M; ++j) + { + if (i >= (j-1)*N && i < j*N) + { + CHECK_AND_ASSERT_THROW_MES(1+j < zpow.size(), "invalid zpow index"); + CHECK_AND_ASSERT_THROW_MES(i-(j-1)*N < twoN.size(), "invalid twoN index"); + sc_muladd(zero_twos[i].bytes, zpow[1+j].bytes, twoN[i-(j-1)*N].bytes, zero_twos[i].bytes); + } + } + } - rct::key k = rct::zero(); - const auto yN = vector_powers(y, N); - rct::key ip1y = inner_product(oneN, yN); - rct::key zsq; - sc_mul(zsq.bytes, z.bytes, z.bytes); - rct::key tmp, tmp2; - sc_mulsub(k.bytes, zsq.bytes, ip1y.bytes, k.bytes); - rct::key zcu; - sc_mul(zcu.bytes, zsq.bytes, z.bytes); - sc_mulsub(k.bytes, zcu.bytes, ip12.bytes, k.bytes); - PERF_TIMER_STOP(VERIFY_line_61); + rct::keyV r0 = vector_add(aR, zMN); + const auto yMN = vector_powers(y, MN); + r0 = hadamard(r0, yMN); + r0 = vector_add(r0, zero_twos); + rct::keyV r1 = hadamard(yMN, sR); - PERF_TIMER_START_BP(VERIFY_line_61rl); - sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes); - rct::key L61Right = rct::scalarmultKey(rct::H, tmp); + // Polynomial construction before PAPER LINE 46 + rct::key t1_1 = inner_product(l0, r1); + rct::key t1_2 = inner_product(l1, r0); + rct::key t1; + sc_add(t1.bytes, t1_1.bytes, t1_2.bytes); + rct::key t2 = inner_product(l1, r1); - CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "proof.V does not have exactly one element"); - tmp = rct::scalarmultKey(proof.V[0], zsq); - rct::addKeys(L61Right, L61Right, tmp); + PERF_TIMER_STOP(PROVE_step1); - tmp = rct::scalarmultKey(proof.T1, x); - rct::addKeys(L61Right, L61Right, tmp); + PERF_TIMER_START_BP(PROVE_step2); + // PAPER LINES 47-48 + rct::key tau1 = rct::skGen(), tau2 = rct::skGen(); + + rct::key T1 = rct::addKeys(rct::scalarmultH(t1), rct::scalarmultBase(tau1)); + T1 = rct::scalarmultKey(T1, INV_EIGHT); + rct::key T2 = rct::addKeys(rct::scalarmultH(t2), rct::scalarmultBase(tau2)); + T2 = rct::scalarmultKey(T2, INV_EIGHT); + // PAPER LINES 49-51 + rct::key x = hash_cache_mash(hash_cache, z, T1, T2); + if (x == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step2); + MINFO("x is 0, trying again"); + goto try_again; + } + + // PAPER LINES 52-53 + rct::key taux; + sc_mul(taux.bytes, tau1.bytes, x.bytes); rct::key xsq; sc_mul(xsq.bytes, x.bytes, x.bytes); - tmp = rct::scalarmultKey(proof.T2, xsq); - rct::addKeys(L61Right, L61Right, tmp); - PERF_TIMER_STOP(VERIFY_line_61rl); - - if (!(L61Right == L61Left)) + sc_muladd(taux.bytes, tau2.bytes, xsq.bytes, taux.bytes); + for (size_t j = 1; j <= sv.size(); ++j) { - MERROR("Verification failure at step 1"); - return false; + CHECK_AND_ASSERT_THROW_MES(j+1 < zpow.size(), "invalid zpow index"); + sc_muladd(taux.bytes, zpow[j+1].bytes, gamma[j-1].bytes, taux.bytes); } + rct::key mu; + sc_muladd(mu.bytes, x.bytes, rho.bytes, alpha.bytes); - PERF_TIMER_START_BP(VERIFY_line_62); - // PAPER LINE 62 - rct::key P = rct::addKeys(proof.A, rct::scalarmultKey(proof.S, x)); - PERF_TIMER_STOP(VERIFY_line_62); + // PAPER LINES 54-57 + rct::keyV l = l0; + l = vector_add(l, vector_scalar(l1, x)); + rct::keyV r = r0; + r = vector_add(r, vector_scalar(r1, x)); + PERF_TIMER_STOP(PROVE_step2); - // Compute the number of rounds for the inner product - const size_t rounds = proof.L.size(); - CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds"); + PERF_TIMER_START_BP(PROVE_step3); + rct::key t = inner_product(l, r); - PERF_TIMER_START_BP(VERIFY_line_21_22); - // PAPER LINES 21-22 - // The inner product challenges are computed per round - rct::keyV w(rounds); - for (size_t i = 0; i < rounds; ++i) + // DEBUG: Test if the l and r vectors match the polynomial forms +#ifdef DEBUG_BP + rct::key test_t; + const rct::key t0 = inner_product(l0, r0); + sc_muladd(test_t.bytes, t1.bytes, x.bytes, t0.bytes); + sc_muladd(test_t.bytes, t2.bytes, xsq.bytes, test_t.bytes); + CHECK_AND_ASSERT_THROW_MES(test_t == t, "test_t check failed"); +#endif + + // PAPER LINES 32-33 + rct::key x_ip = hash_cache_mash(hash_cache, x, taux, mu, t); + if (x_ip == rct::zero()) { - w[i] = hash_cache_mash(hash_cache, proof.L[i], proof.R[i]); + PERF_TIMER_STOP(PROVE_step3); + MINFO("x_ip is 0, trying again"); + goto try_again; } - PERF_TIMER_STOP(VERIFY_line_21_22); - PERF_TIMER_START_BP(VERIFY_line_24_25); - // Basically PAPER LINES 24-25 - // Compute the curvepoints from G[i] and H[i] - rct::key inner_prod = rct::identity(); + // These are used in the inner product rounds + size_t nprime = MN; + rct::keyV Gprime(MN); + rct::keyV Hprime(MN); + rct::keyV aprime(MN); + rct::keyV bprime(MN); + const rct::key yinv = invert(y); rct::key yinvpow = rct::identity(); - rct::key ypow = rct::identity(); + for (size_t i = 0; i < MN; ++i) + { + Gprime[i] = Gi[i]; + Hprime[i] = scalarmultKey(Hi_p3[i], yinvpow); + sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); + aprime[i] = l[i]; + bprime[i] = r[i]; + } + rct::keyV L(logMN); + rct::keyV R(logMN); + int round = 0; + rct::keyV w(logMN); // this is the challenge x in the inner product protocol + PERF_TIMER_STOP(PROVE_step3); - PERF_TIMER_START_BP(VERIFY_line_24_25_invert); - const rct::key yinv = invert(y); - rct::keyV winv(rounds); - for (size_t i = 0; i < rounds; ++i) - winv[i] = invert(w[i]); - PERF_TIMER_STOP(VERIFY_line_24_25_invert); + PERF_TIMER_START_BP(PROVE_step4); + // PAPER LINE 13 + while (nprime > 1) + { + // PAPER LINE 15 + nprime /= 2; - for (size_t i = 0; i < N; ++i) + // PAPER LINES 16-17 + rct::key cL = inner_product(slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size())); + rct::key cR = inner_product(slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime)); + + // PAPER LINES 18-19 + L[round] = vector_exponent_custom(slice(Gprime, nprime, Gprime.size()), slice(Hprime, 0, nprime), slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size())); + sc_mul(tmp.bytes, cL.bytes, x_ip.bytes); + rct::addKeys(L[round], L[round], rct::scalarmultH(tmp)); + L[round] = rct::scalarmultKey(L[round], INV_EIGHT); + R[round] = vector_exponent_custom(slice(Gprime, 0, nprime), slice(Hprime, nprime, Hprime.size()), slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime)); + sc_mul(tmp.bytes, cR.bytes, x_ip.bytes); + rct::addKeys(R[round], R[round], rct::scalarmultH(tmp)); + R[round] = rct::scalarmultKey(R[round], INV_EIGHT); + + // PAPER LINES 21-22 + w[round] = hash_cache_mash(hash_cache, L[round], R[round]); + if (w[round] == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step4); + MINFO("w[round] is 0, trying again"); + goto try_again; + } + + // PAPER LINES 24-25 + const rct::key winv = invert(w[round]); + Gprime = hadamard2(vector_scalar2(slice(Gprime, 0, nprime), winv), vector_scalar2(slice(Gprime, nprime, Gprime.size()), w[round])); + Hprime = hadamard2(vector_scalar2(slice(Hprime, 0, nprime), w[round]), vector_scalar2(slice(Hprime, nprime, Hprime.size()), winv)); + + // PAPER LINES 28-29 + aprime = vector_add(vector_scalar(slice(aprime, 0, nprime), w[round]), vector_scalar(slice(aprime, nprime, aprime.size()), winv)); + bprime = vector_add(vector_scalar(slice(bprime, 0, nprime), winv), vector_scalar(slice(bprime, nprime, bprime.size()), w[round])); + + ++round; + } + PERF_TIMER_STOP(PROVE_step4); + + // PAPER LINE 58 (with inclusions from PAPER LINE 8 and PAPER LINE 20) + return Bulletproof(V, A, S, T1, T2, taux, mu, L, R, aprime[0], bprime[0], t); +} + +Bulletproof bulletproof_PROVE(const std::vector<uint64_t> &v, const rct::keyV &gamma) +{ + CHECK_AND_ASSERT_THROW_MES(v.size() == gamma.size(), "Incompatible sizes of v and gamma"); + + // vG + gammaH + PERF_TIMER_START_BP(PROVE_v); + rct::keyV sv(v.size()); + for (size_t i = 0; i < v.size(); ++i) { - // Convert the index to binary IN REVERSE and construct the scalar exponent - rct::key g_scalar = proof.a; - rct::key h_scalar; - sc_mul(h_scalar.bytes, proof.b.bytes, yinvpow.bytes); + sv[i] = rct::zero(); + sv[i].bytes[0] = v[i] & 255; + sv[i].bytes[1] = (v[i] >> 8) & 255; + sv[i].bytes[2] = (v[i] >> 16) & 255; + sv[i].bytes[3] = (v[i] >> 24) & 255; + sv[i].bytes[4] = (v[i] >> 32) & 255; + sv[i].bytes[5] = (v[i] >> 40) & 255; + sv[i].bytes[6] = (v[i] >> 48) & 255; + sv[i].bytes[7] = (v[i] >> 56) & 255; + } + PERF_TIMER_STOP(PROVE_v); + return bulletproof_PROVE(sv, gamma); +} + +/* Given a range proof, determine if it is valid */ +bool bulletproof_VERIFY(const std::vector<const Bulletproof*> &proofs) +{ + init_exponents(); + + PERF_TIMER_START_BP(VERIFY); + + // sanity and figure out which proof is longest + size_t max_length = 0; + for (const Bulletproof *p: proofs) + { + const Bulletproof &proof = *p; + + // check scalar range + CHECK_AND_ASSERT_MES(is_reduced(proof.taux), false, "Input scalar not in range"); + CHECK_AND_ASSERT_MES(is_reduced(proof.mu), false, "Input scalar not in range"); + CHECK_AND_ASSERT_MES(is_reduced(proof.a), false, "Input scalar not in range"); + CHECK_AND_ASSERT_MES(is_reduced(proof.b), false, "Input scalar not in range"); + CHECK_AND_ASSERT_MES(is_reduced(proof.t), false, "Input scalar not in range"); + + CHECK_AND_ASSERT_MES(proof.V.size() >= 1, false, "V does not have at least one element"); + CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes"); + CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof"); - for (size_t j = rounds; j-- > 0; ) + max_length = std::max(max_length, proof.L.size()); + } + CHECK_AND_ASSERT_MES(max_length < 32, false, "At least one proof is too large"); + size_t maxMN = 1u << max_length; + + const size_t logN = 6; + const size_t N = 1 << logN; + rct::key tmp; + + // setup weighted aggregates + rct::key Z0 = rct::identity(); + rct::key z1 = rct::zero(); + rct::key Z2 = rct::identity(); + rct::key z3 = rct::zero(); + rct::keyV z4(maxMN, rct::zero()), z5(maxMN, rct::zero()); + rct::key Y2 = rct::identity(), Y3 = rct::identity(), Y4 = rct::identity(); + rct::key y0 = rct::zero(), y1 = rct::zero(); + for (const Bulletproof *p: proofs) + { + const Bulletproof &proof = *p; + + size_t M, logM; + for (logM = 0; (M = 1<<logM) <= maxM && M < proof.V.size(); ++logM); + CHECK_AND_ASSERT_MES(proof.L.size() == 6+logM, false, "Proof is not the expected size"); + const size_t MN = M*N; + rct::key weight = rct::skGen(); + + // Reconstruct the challenges + PERF_TIMER_START_BP(VERIFY_start); + rct::key hash_cache = rct::hash_to_scalar(proof.V); + rct::key y = hash_cache_mash(hash_cache, proof.A, proof.S); + CHECK_AND_ASSERT_MES(!(y == rct::zero()), false, "y == 0"); + rct::key z = hash_cache = rct::hash_to_scalar(y); + CHECK_AND_ASSERT_MES(!(z == rct::zero()), false, "z == 0"); + rct::key x = hash_cache_mash(hash_cache, z, proof.T1, proof.T2); + CHECK_AND_ASSERT_MES(!(x == rct::zero()), false, "x == 0"); + rct::key x_ip = hash_cache_mash(hash_cache, x, proof.taux, proof.mu, proof.t); + CHECK_AND_ASSERT_MES(!(x_ip == rct::zero()), false, "x_ip == 0"); + PERF_TIMER_STOP(VERIFY_start); + + PERF_TIMER_START_BP(VERIFY_line_61); + // PAPER LINE 61 + sc_muladd(y0.bytes, proof.taux.bytes, weight.bytes, y0.bytes); + + const rct::keyV zpow = vector_powers(z, M+3); + + rct::key k; + const rct::key ip1y = vector_power_sum(y, MN); + sc_mulsub(k.bytes, zpow[2].bytes, ip1y.bytes, rct::zero().bytes); + for (size_t j = 1; j <= M; ++j) + { + CHECK_AND_ASSERT_MES(j+2 < zpow.size(), false, "invalid zpow index"); + sc_mulsub(k.bytes, zpow[j+2].bytes, ip12.bytes, k.bytes); + } + PERF_TIMER_STOP(VERIFY_line_61); + + PERF_TIMER_START_BP(VERIFY_line_61rl_new); + sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes); + std::vector<MultiexpData> multiexp_data; + multiexp_data.reserve(proof.V.size()); + sc_sub(tmp.bytes, proof.t.bytes, tmp.bytes); + sc_muladd(y1.bytes, tmp.bytes, weight.bytes, y1.bytes); + for (size_t j = 0; j < proof.V.size(); j++) { - size_t J = w.size() - j - 1; + sc_mul(tmp.bytes, zpow[j+2].bytes, EIGHT.bytes); + multiexp_data.emplace_back(tmp, proof.V[j]); + } + rct::addKeys(Y2, Y2, rct::scalarmultKey(multiexp(multiexp_data, false), weight)); + rct::key weight8; + sc_mul(weight8.bytes, weight.bytes, EIGHT.bytes); + sc_mul(tmp.bytes, x.bytes, weight8.bytes); + rct::addKeys(Y3, Y3, rct::scalarmultKey(proof.T1, tmp)); + rct::key xsq; + sc_mul(xsq.bytes, x.bytes, x.bytes); + sc_mul(tmp.bytes, xsq.bytes, weight8.bytes); + rct::addKeys(Y4, Y4, rct::scalarmultKey(proof.T2, tmp)); + PERF_TIMER_STOP(VERIFY_line_61rl_new); + + PERF_TIMER_START_BP(VERIFY_line_62); + // PAPER LINE 62 + sc_mul(tmp.bytes, x.bytes, EIGHT.bytes); + rct::addKeys(Z0, Z0, rct::scalarmultKey(rct::addKeys(rct::scalarmult8(proof.A), rct::scalarmultKey(proof.S, tmp)), weight)); + PERF_TIMER_STOP(VERIFY_line_62); + + // Compute the number of rounds for the inner product + const size_t rounds = logM+logN; + CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds"); + + PERF_TIMER_START_BP(VERIFY_line_21_22); + // PAPER LINES 21-22 + // The inner product challenges are computed per round + rct::keyV w(rounds); + for (size_t i = 0; i < rounds; ++i) + { + w[i] = hash_cache_mash(hash_cache, proof.L[i], proof.R[i]); + CHECK_AND_ASSERT_MES(!(w[i] == rct::zero()), false, "w[i] == 0"); + } + PERF_TIMER_STOP(VERIFY_line_21_22); + + PERF_TIMER_START_BP(VERIFY_line_24_25); + // Basically PAPER LINES 24-25 + // Compute the curvepoints from G[i] and H[i] + rct::key yinvpow = rct::identity(); + rct::key ypow = rct::identity(); + + PERF_TIMER_START_BP(VERIFY_line_24_25_invert); + const rct::key yinv = invert(y); + rct::keyV winv(rounds); + for (size_t i = 0; i < rounds; ++i) + winv[i] = invert(w[i]); + PERF_TIMER_STOP(VERIFY_line_24_25_invert); + + for (size_t i = 0; i < MN; ++i) + { + // Convert the index to binary IN REVERSE and construct the scalar exponent + rct::key g_scalar = proof.a; + rct::key h_scalar; + sc_mul(h_scalar.bytes, proof.b.bytes, yinvpow.bytes); - if ((i & (((size_t)1)<<j)) == 0) + for (size_t j = rounds; j-- > 0; ) { - sc_mul(g_scalar.bytes, g_scalar.bytes, winv[J].bytes); - sc_mul(h_scalar.bytes, h_scalar.bytes, w[J].bytes); + size_t J = w.size() - j - 1; + + if ((i & (((size_t)1)<<j)) == 0) + { + sc_mul(g_scalar.bytes, g_scalar.bytes, winv[J].bytes); + sc_mul(h_scalar.bytes, h_scalar.bytes, w[J].bytes); + } + else + { + sc_mul(g_scalar.bytes, g_scalar.bytes, w[J].bytes); + sc_mul(h_scalar.bytes, h_scalar.bytes, winv[J].bytes); + } } - else + + // Adjust the scalars using the exponents from PAPER LINE 62 + sc_add(g_scalar.bytes, g_scalar.bytes, z.bytes); + CHECK_AND_ASSERT_MES(2+i/N < zpow.size(), false, "invalid zpow index"); + CHECK_AND_ASSERT_MES(i%N < twoN.size(), false, "invalid twoN index"); + sc_mul(tmp.bytes, zpow[2+i/N].bytes, twoN[i%N].bytes); + sc_muladd(tmp.bytes, z.bytes, ypow.bytes, tmp.bytes); + sc_mulsub(h_scalar.bytes, tmp.bytes, yinvpow.bytes, h_scalar.bytes); + + sc_muladd(z4[i].bytes, g_scalar.bytes, weight.bytes, z4[i].bytes); + sc_muladd(z5[i].bytes, h_scalar.bytes, weight.bytes, z5[i].bytes); + + if (i != MN-1) { - sc_mul(g_scalar.bytes, g_scalar.bytes, w[J].bytes); - sc_mul(h_scalar.bytes, h_scalar.bytes, winv[J].bytes); + sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); + sc_mul(ypow.bytes, ypow.bytes, y.bytes); } } - // Adjust the scalars using the exponents from PAPER LINE 62 - sc_add(g_scalar.bytes, g_scalar.bytes, z.bytes); - sc_mul(tmp.bytes, zsq.bytes, twoN[i].bytes); - sc_muladd(tmp.bytes, z.bytes, ypow.bytes, tmp.bytes); - sc_mulsub(h_scalar.bytes, tmp.bytes, yinvpow.bytes, h_scalar.bytes); + PERF_TIMER_STOP(VERIFY_line_24_25); - // Now compute the basepoint's scalar multiplication - // Each of these could be written as a multiexp operation instead - rct::addKeys3(tmp, g_scalar, Gprecomp[i], h_scalar, Hprecomp[i]); - rct::addKeys(inner_prod, inner_prod, tmp); + // PAPER LINE 26 + PERF_TIMER_START_BP(VERIFY_line_26_new); + multiexp_data.clear(); + multiexp_data.reserve(2*rounds); - if (i != N-1) + sc_muladd(z1.bytes, proof.mu.bytes, weight.bytes, z1.bytes); + for (size_t i = 0; i < rounds; ++i) { - sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); - sc_mul(ypow.bytes, ypow.bytes, y.bytes); + sc_mul(tmp.bytes, w[i].bytes, w[i].bytes); + sc_mul(tmp.bytes, tmp.bytes, EIGHT.bytes); + multiexp_data.emplace_back(tmp, proof.L[i]); + sc_mul(tmp.bytes, winv[i].bytes, winv[i].bytes); + sc_mul(tmp.bytes, tmp.bytes, EIGHT.bytes); + multiexp_data.emplace_back(tmp, proof.R[i]); } + rct::key acc = multiexp(multiexp_data, false); + rct::addKeys(Z2, Z2, rct::scalarmultKey(acc, weight)); + sc_mulsub(tmp.bytes, proof.a.bytes, proof.b.bytes, proof.t.bytes); + sc_mul(tmp.bytes, tmp.bytes, x_ip.bytes); + sc_muladd(z3.bytes, tmp.bytes, weight.bytes, z3.bytes); + PERF_TIMER_STOP(VERIFY_line_26_new); } - PERF_TIMER_STOP(VERIFY_line_24_25); - - PERF_TIMER_START_BP(VERIFY_line_26); - // PAPER LINE 26 - rct::key pprime; - sc_sub(tmp.bytes, rct::zero().bytes, proof.mu.bytes); - rct::addKeys(pprime, P, rct::scalarmultBase(tmp)); - - for (size_t i = 0; i < rounds; ++i) - { - sc_mul(tmp.bytes, w[i].bytes, w[i].bytes); - sc_mul(tmp2.bytes, winv[i].bytes, winv[i].bytes); -#if 1 - ge_dsmp cacheL, cacheR; - rct::precomp(cacheL, proof.L[i]); - rct::precomp(cacheR, proof.R[i]); - rct::addKeys3(tmp, tmp, cacheL, tmp2, cacheR); - rct::addKeys(pprime, pprime, tmp); -#else - rct::addKeys(pprime, pprime, rct::scalarmultKey(proof.L[i], tmp)); - rct::addKeys(pprime, pprime, rct::scalarmultKey(proof.R[i], tmp2)); -#endif - } - sc_mul(tmp.bytes, proof.t.bytes, x_ip.bytes); - rct::addKeys(pprime, pprime, rct::scalarmultKey(rct::H, tmp)); - PERF_TIMER_STOP(VERIFY_line_26); + // now check all proofs at once PERF_TIMER_START_BP(VERIFY_step2_check); - sc_mul(tmp.bytes, proof.a.bytes, proof.b.bytes); - sc_mul(tmp.bytes, tmp.bytes, x_ip.bytes); - tmp = rct::scalarmultKey(rct::H, tmp); - rct::addKeys(tmp, tmp, inner_prod); + ge_p3 check1; + ge_scalarmult_base(&check1, y0.bytes); + addKeys_acc_p3(&check1, y1, rct::H); + sub_acc_p3(&check1, Y2); + sub_acc_p3(&check1, Y3); + sub_acc_p3(&check1, Y4); + if (!ge_p3_is_point_at_infinity(&check1)) + { + MERROR("Verification failure at step 1"); + return false; + } + ge_p3 check2; + sc_sub(tmp.bytes, rct::zero().bytes, z1.bytes); + ge_double_scalarmult_base_vartime_p3(&check2, z3.bytes, &ge_p3_H, tmp.bytes); + add_acc_p3(&check2, Z0); + add_acc_p3(&check2, Z2); + + std::vector<MultiexpData> multiexp_data; + multiexp_data.reserve(2 * maxMN); + for (size_t i = 0; i < maxMN; ++i) + { + sc_sub(tmp.bytes, rct::zero().bytes, z4[i].bytes); + multiexp_data.emplace_back(tmp, Gi_p3[i]); + sc_sub(tmp.bytes, rct::zero().bytes, z5[i].bytes); + multiexp_data.emplace_back(tmp, Hi_p3[i]); + } + add_acc_p3(&check2, multiexp(multiexp_data, true)); PERF_TIMER_STOP(VERIFY_step2_check); - if (!(pprime == tmp)) + + if (!ge_p3_is_point_at_infinity(&check2)) { MERROR("Verification failure at step 2"); return false; @@ -749,4 +1247,19 @@ bool bulletproof_VERIFY(const Bulletproof &proof) return true; } +bool bulletproof_VERIFY(const std::vector<Bulletproof> &proofs) +{ + std::vector<const Bulletproof*> proof_pointers; + for (const Bulletproof &proof: proofs) + proof_pointers.push_back(&proof); + return bulletproof_VERIFY(proof_pointers); +} + +bool bulletproof_VERIFY(const Bulletproof &proof) +{ + std::vector<const Bulletproof*> proofs; + proofs.push_back(&proof); + return bulletproof_VERIFY(proofs); +} + } |