aboutsummaryrefslogtreecommitdiff
path: root/src/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto')
-rw-r--r--src/crypto/CMakeLists.txt11
-rw-r--r--src/crypto/oaes_lib.c6
-rw-r--r--src/crypto/slow-hash.c11
-rw-r--r--src/crypto/tree-hash.c38
4 files changed, 42 insertions, 24 deletions
diff --git a/src/crypto/CMakeLists.txt b/src/crypto/CMakeLists.txt
index 9d83caca8..1e037a07d 100644
--- a/src/crypto/CMakeLists.txt
+++ b/src/crypto/CMakeLists.txt
@@ -89,3 +89,14 @@ if (ARM)
PROPERTY COMPILE_DEFINITIONS "NO_OPTIMIZED_MULTIPLY_ON_ARM")
endif()
endif()
+
+# Because of the way Qt works on android with JNI, the code does not live in the main android thread
+# So this code runs with a 1 MB default stack size.
+# This will force the use of the heap for the allocation of the scratchpad
+if (ANDROID)
+ if( BUILD_GUI_DEPS )
+ add_definitions(-DFORCE_USE_HEAP=1)
+ endif()
+endif()
+
+
diff --git a/src/crypto/oaes_lib.c b/src/crypto/oaes_lib.c
index f054a16f4..0afec6212 100644
--- a/src/crypto/oaes_lib.c
+++ b/src/crypto/oaes_lib.c
@@ -39,8 +39,8 @@
#include <malloc.h>
#endif
-// FreeBSD, and OpenBSD also don't need timeb.h
-#if !defined(__FreeBSD__) && !defined(__OpenBSD__)
+// ANDROID, FreeBSD, and OpenBSD also don't need timeb.h
+#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__ANDROID__)
#include <sys/timeb.h>
#else
#include <sys/time.h>
@@ -499,7 +499,7 @@ static void oaes_get_seed( char buf[RANDSIZ + 1] )
#else
static uint32_t oaes_get_seed(void)
{
- #if !defined(__FreeBSD__) && !defined(__OpenBSD__)
+ #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__ANDROID__)
struct timeb timer;
struct tm *gmTimer;
char * _test = NULL;
diff --git a/src/crypto/slow-hash.c b/src/crypto/slow-hash.c
index 66d9ca5d9..43b9619f3 100644
--- a/src/crypto/slow-hash.c
+++ b/src/crypto/slow-hash.c
@@ -1052,7 +1052,6 @@ STATIC INLINE void xor_blocks(uint8_t* a, const uint8_t* b)
void cn_slow_hash(const void *data, size_t length, char *hash)
{
- uint8_t long_state[MEMORY];
uint8_t text[INIT_SIZE_BYTE];
uint8_t a[AES_BLOCK_SIZE];
uint8_t b[AES_BLOCK_SIZE];
@@ -1070,6 +1069,13 @@ void cn_slow_hash(const void *data, size_t length, char *hash)
hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
};
+#ifndef FORCE_USE_HEAP
+ uint8_t long_state[MEMORY];
+#else
+ uint8_t *long_state = NULL;
+ long_state = (uint8_t *)malloc(MEMORY);
+#endif
+
hash_process(&state.hs, data, length);
memcpy(text, state.init, INIT_SIZE_BYTE);
@@ -1129,6 +1135,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash)
memcpy(state.init, text, INIT_SIZE_BYTE);
hash_permutation(&state.hs);
extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
+#ifdef FORCE_USE_HEAP
+ free(long_state);
+#endif
}
#endif /* !aarch64 || !crypto */
diff --git a/src/crypto/tree-hash.c b/src/crypto/tree-hash.c
index d73f0d959..5cdaa8c94 100644
--- a/src/crypto/tree-hash.c
+++ b/src/crypto/tree-hash.c
@@ -40,27 +40,28 @@
#include <stdlib.h>
#endif
-/// Quick check if this is power of two (use on unsigned types; in this case for size_t only)
-bool ispowerof2_size_t(size_t x) {
- return x && !(x & (x - 1));
-}
-
/***
* Round to power of two, for count>=3 and for count being not too large (as reasonable for tree hash calculations)
*/
size_t tree_hash_cnt(size_t count) {
- assert( count >= 3); // cases for 0,1,2 are handled elsewhere
- // Round down the count size: fun(2**n)= 2**(n-1) to round down to power of two
- size_t tmp = count - 1;
- size_t jj = 1;
- for (jj=1 ; tmp != 0 ; ++jj) {
- tmp /= 2; // dividing by 2 until to get how many powers of 2 fits size_to tmp
- }
- size_t cnt = 1 << (jj-2); // cnt is the count, but rounded down to power of two
- // printf("count=%zu cnt=%zu jj=%zu tmp=%zu \n" , count,cnt,jj,tmp);
- assert( cnt > 0 ); assert( cnt >= count/2 ); assert( cnt <= count );
- assert( ispowerof2_size_t( cnt ));
- return cnt;
+ // This algo has some bad history but all we are doing is 1 << floor(log2(count))
+ // There are _many_ ways to do log2, for some reason the one selected was the most obscure one,
+ // and fixing it made it even more obscure.
+ //
+ // Iterative method implemented below aims for clarity over speed, if performance is needed
+ // then my advice is to use the BSR instruction on x86
+ //
+ // All the paranoid asserts have been removed since it is trivial to mathematically prove that
+ // the return will always be a power of 2.
+ // Problem space has been defined as 3 <= count <= 2^28. Of course quarter of a billion transactions
+ // is not a sane upper limit for a block, so there will be tighter limits in other parts of the code
+
+ assert( count >= 3 ); // cases for 0,1,2 are handled elsewhere
+ assert( count <= 0x10000000 ); // sanity limit to 2^28, MSB=1 will cause an inf loop
+
+ size_t pow = 2;
+ while(pow < count) pow <<= 1;
+ return pow >> 1;
}
void tree_hash(const char (*hashes)[HASH_SIZE], size_t count, char *root_hash) {
@@ -86,9 +87,6 @@ void tree_hash(const char (*hashes)[HASH_SIZE], size_t count, char *root_hash) {
size_t i, j;
size_t cnt = tree_hash_cnt( count );
- size_t max_size_t = (size_t) -1; // max allowed value of size_t
- assert( cnt < max_size_t/2 ); // reasonable size to avoid any overflows. /2 is extra; Anyway should be limited much stronger by logical code
- // as we have sane limits on transactions counts in blockchain rules
char (*ints)[HASH_SIZE];
size_t ints_size = cnt * HASH_SIZE;