diff options
Diffstat (limited to 'src/crypto/slow-hash.c')
-rw-r--r-- | src/crypto/slow-hash.c | 252 |
1 files changed, 198 insertions, 54 deletions
diff --git a/src/crypto/slow-hash.c b/src/crypto/slow-hash.c index e76fb1c0a..914ba6dc0 100644 --- a/src/crypto/slow-hash.c +++ b/src/crypto/slow-hash.c @@ -38,6 +38,7 @@ #include "common/int-util.h" #include "hash-ops.h" #include "oaes_lib.h" +#include "variant2_int_sqrt.h" #define MEMORY (1 << 21) // 2MB scratchpad #define ITER (1 << 20) @@ -50,7 +51,7 @@ extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expa extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey); #define VARIANT1_1(p) \ - do if (variant > 0) \ + do if (variant == 1) \ { \ const uint8_t tmp = ((const uint8_t*)(p))[11]; \ static const uint32_t table = 0x75310; \ @@ -59,7 +60,7 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp } while(0) #define VARIANT1_2(p) \ - do if (variant > 0) \ + do if (variant == 1) \ { \ xor64(p, tweak1_2); \ } while(0) @@ -67,7 +68,7 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp #define VARIANT1_CHECK() \ do if (length < 43) \ { \ - fprintf(stderr, "Cryptonight variants need at least 43 bytes of data"); \ + fprintf(stderr, "Cryptonight variant 1 needs at least 43 bytes of data"); \ _exit(1); \ } while(0) @@ -75,7 +76,7 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp #define VARIANT1_PORTABLE_INIT() \ uint8_t tweak1_2[8]; \ - do if (variant > 0) \ + do if (variant == 1) \ { \ VARIANT1_CHECK(); \ memcpy(&tweak1_2, &state.hs.b[192], sizeof(tweak1_2)); \ @@ -83,11 +84,119 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp } while(0) #define VARIANT1_INIT64() \ - if (variant > 0) \ + if (variant == 1) \ { \ VARIANT1_CHECK(); \ } \ - const uint64_t tweak1_2 = variant > 0 ? (state.hs.w[24] ^ (*((const uint64_t*)NONCE_POINTER))) : 0 + const uint64_t tweak1_2 = (variant == 1) ? (state.hs.w[24] ^ (*((const uint64_t*)NONCE_POINTER))) : 0 + +#define VARIANT2_INIT64() \ + uint64_t division_result = 0; \ + uint64_t sqrt_result = 0; \ + do if (variant >= 2) \ + { \ + U64(b)[2] = state.hs.w[8] ^ state.hs.w[10]; \ + U64(b)[3] = state.hs.w[9] ^ state.hs.w[11]; \ + division_result = state.hs.w[12]; \ + sqrt_result = state.hs.w[13]; \ + } while (0) + +#define VARIANT2_PORTABLE_INIT() \ + uint64_t division_result = 0; \ + uint64_t sqrt_result = 0; \ + do if (variant >= 2) \ + { \ + memcpy(b + AES_BLOCK_SIZE, state.hs.b + 64, AES_BLOCK_SIZE); \ + xor64(b + AES_BLOCK_SIZE, state.hs.b + 80); \ + xor64(b + AES_BLOCK_SIZE + 8, state.hs.b + 88); \ + division_result = state.hs.w[12]; \ + sqrt_result = state.hs.w[13]; \ + } while (0) + +#define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \ + do if (variant >= 2) \ + { \ + const __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \ + const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \ + const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \ + _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \ + _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \ + _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \ + } while (0) + +#define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \ + do if (variant >= 2) \ + { \ + const uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \ + const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \ + const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \ + vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \ + vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \ + vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \ + } while (0) + +#define VARIANT2_PORTABLE_SHUFFLE_ADD(base_ptr, offset) \ + do if (variant >= 2) \ + { \ + uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \ + uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \ + uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \ + \ + const uint64_t chunk1_old[2] = { chunk1[0], chunk1[1] }; \ + \ + uint64_t b1[2]; \ + memcpy(b1, b + 16, 16); \ + chunk1[0] = chunk3[0] + b1[0]; \ + chunk1[1] = chunk3[1] + b1[1]; \ + \ + uint64_t a0[2]; \ + memcpy(a0, a, 16); \ + chunk3[0] = chunk2[0] + a0[0]; \ + chunk3[1] = chunk2[1] + a0[1]; \ + \ + uint64_t b0[2]; \ + memcpy(b0, b, 16); \ + chunk2[0] = chunk1_old[0] + b0[0]; \ + chunk2[1] = chunk1_old[1] + b0[1]; \ + } while (0) + +#define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \ + ((uint64_t*)(b))[0] ^= division_result ^ (sqrt_result << 32); \ + { \ + const uint64_t dividend = ((uint64_t*)(ptr))[1]; \ + const uint32_t divisor = (((uint64_t*)(ptr))[0] + (uint32_t)(sqrt_result << 1)) | 0x80000001UL; \ + division_result = ((uint32_t)(dividend / divisor)) + \ + (((uint64_t)(dividend % divisor)) << 32); \ + } \ + const uint64_t sqrt_input = ((uint64_t*)(ptr))[0] + division_result + +#define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \ + do if (variant >= 2) \ + { \ + VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ + VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \ + VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \ + } while(0) + +#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50) + // double precision floating point type has enough bits of precision on current platform + #define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \ + do if (variant >= 2) \ + { \ + VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ + VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \ + VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \ + } while (0) +#else + // double precision floating point type is not good enough on current platform + // fall back to the reference code (integer only) + #define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \ + do if (variant >= 2) \ + { \ + VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ + VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \ + } while (0) +#endif #if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64))) // Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI @@ -164,19 +273,22 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp * This code is based upon an optimized implementation by dga. */ #define post_aes() \ + VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \ _mm_store_si128(R128(c), _c); \ - _b = _mm_xor_si128(_b, _c); \ - _mm_store_si128(R128(&hp_state[j]), _b); \ + _mm_store_si128(R128(&hp_state[j]), _mm_xor_si128(_b, _c)); \ VARIANT1_1(&hp_state[j]); \ j = state_index(c); \ p = U64(&hp_state[j]); \ b[0] = p[0]; b[1] = p[1]; \ + VARIANT2_INTEGER_MATH_SSE2(b, c); \ __mul(); \ + VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \ a[0] += hi; a[1] += lo; \ p = U64(&hp_state[j]); \ p[0] = a[0]; p[1] = a[1]; \ a[0] ^= b[0]; a[1] ^= b[1]; \ VARIANT1_2(p + 1); \ + _b1 = _b; \ _b = _c; \ #if defined(_MSC_VER) @@ -570,10 +682,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int uint8_t text[INIT_SIZE_BYTE]; RDATA_ALIGN16 uint64_t a[2]; - RDATA_ALIGN16 uint64_t b[2]; + RDATA_ALIGN16 uint64_t b[4]; RDATA_ALIGN16 uint64_t c[2]; union cn_slow_hash_state state; - __m128i _a, _b, _c; + __m128i _a, _b, _b1, _c; uint64_t hi, lo; size_t i, j; @@ -599,6 +711,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int memcpy(text, state.init, INIT_SIZE_BYTE); VARIANT1_INIT64(); + VARIANT2_INIT64(); /* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill * the 2MB large random access buffer. @@ -637,6 +750,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int */ _b = _mm_load_si128(R128(b)); + _b1 = _mm_load_si128(R128(b) + 1); // Two independent versions, one with AES, one without, to ensure that // the useAes test is only performed once, not every iteration. if(useAes) @@ -761,19 +875,22 @@ union cn_slow_hash_state _a = vld1q_u8((const uint8_t *)a); \ #define post_aes() \ + VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \ vst1q_u8((uint8_t *)c, _c); \ - _b = veorq_u8(_b, _c); \ - vst1q_u8(&hp_state[j], _b); \ + vst1q_u8(&hp_state[j], veorq_u8(_b, _c)); \ VARIANT1_1(&hp_state[j]); \ j = state_index(c); \ p = U64(&hp_state[j]); \ b[0] = p[0]; b[1] = p[1]; \ + VARIANT2_PORTABLE_INTEGER_MATH(b, c); \ __mul(); \ + VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \ a[0] += hi; a[1] += lo; \ p = U64(&hp_state[j]); \ p[0] = a[0]; p[1] = a[1]; \ a[0] ^= b[0]; a[1] ^= b[1]; \ VARIANT1_2(p + 1); \ + _b1 = _b; \ _b = _c; \ @@ -912,10 +1029,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int uint8_t text[INIT_SIZE_BYTE]; RDATA_ALIGN16 uint64_t a[2]; - RDATA_ALIGN16 uint64_t b[2]; + RDATA_ALIGN16 uint64_t b[4]; RDATA_ALIGN16 uint64_t c[2]; union cn_slow_hash_state state; - uint8x16_t _a, _b, _c, zero = {0}; + uint8x16_t _a, _b, _b1, _c, zero = {0}; uint64_t hi, lo; size_t i, j; @@ -936,6 +1053,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int memcpy(text, state.init, INIT_SIZE_BYTE); VARIANT1_INIT64(); + VARIANT2_INIT64(); /* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill * the 2MB large random access buffer. @@ -959,7 +1077,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int */ _b = vld1q_u8((const uint8_t *)b); - + _b1 = vld1q_u8(((const uint8_t *)b) + AES_BLOCK_SIZE); for(i = 0; i < ITER / 2; i++) { @@ -1075,6 +1193,11 @@ __asm__ __volatile__( #endif /* !aarch64 */ #endif // NO_OPTIMIZED_MULTIPLY_ON_ARM +STATIC INLINE void copy_block(uint8_t* dst, const uint8_t* src) +{ + memcpy(dst, src, AES_BLOCK_SIZE); +} + STATIC INLINE void sum_half_blocks(uint8_t* a, const uint8_t* b) { uint64_t a0, a1, b0, b1; @@ -1109,7 +1232,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int { uint8_t text[INIT_SIZE_BYTE]; uint8_t a[AES_BLOCK_SIZE]; - uint8_t b[AES_BLOCK_SIZE]; + uint8_t b[AES_BLOCK_SIZE * 2]; + uint8_t c[AES_BLOCK_SIZE]; + uint8_t c1[AES_BLOCK_SIZE]; uint8_t d[AES_BLOCK_SIZE]; uint8_t aes_key[AES_KEY_SIZE]; RDATA_ALIGN16 uint8_t expandedKey[256]; @@ -1138,11 +1263,12 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int } memcpy(text, state.init, INIT_SIZE_BYTE); - VARIANT1_INIT64(); - aes_ctx = (oaes_ctx *) oaes_alloc(); oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE); + VARIANT1_INIT64(); + VARIANT2_INIT64(); + // use aligned data memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len); for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) @@ -1163,23 +1289,33 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int #define state_index(x) ((*(uint32_t *) x) & MASK) // Iteration 1 - p = &long_state[state_index(a)]; + j = state_index(a); + p = &long_state[j]; aesb_single_round(p, p, a); + copy_block(c1, p); - xor_blocks(b, p); - swap_blocks(b, p); - swap_blocks(a, b); + VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); + xor_blocks(p, b); VARIANT1_1(p); // Iteration 2 - p = &long_state[state_index(a)]; - - mul(a, p, d); - sum_half_blocks(b, d); - swap_blocks(b, p); - xor_blocks(b, p); - swap_blocks(a, b); - VARIANT1_2(U64(p) + 1); + j = state_index(c1); + p = &long_state[j]; + copy_block(c, p); + + VARIANT2_PORTABLE_INTEGER_MATH(c, c1); + mul(c1, c, d); + VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); + sum_half_blocks(a, d); + swap_blocks(a, c); + xor_blocks(a, c); + VARIANT1_2(U64(c) + 1); + copy_block(p, c); + + if (variant >= 2) { + copy_block(b + AES_BLOCK_SIZE, b); + } + copy_block(b, c1); } memcpy(text, state.init, INIT_SIZE_BYTE); @@ -1298,8 +1434,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int union cn_slow_hash_state state; uint8_t text[INIT_SIZE_BYTE]; uint8_t a[AES_BLOCK_SIZE]; - uint8_t b[AES_BLOCK_SIZE]; - uint8_t c[AES_BLOCK_SIZE]; + uint8_t b[AES_BLOCK_SIZE * 2]; + uint8_t c1[AES_BLOCK_SIZE]; + uint8_t c2[AES_BLOCK_SIZE]; uint8_t d[AES_BLOCK_SIZE]; size_t i, j; uint8_t aes_key[AES_KEY_SIZE]; @@ -1315,6 +1452,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int aes_ctx = (oaes_ctx *) oaes_alloc(); VARIANT1_PORTABLE_INIT(); + VARIANT2_PORTABLE_INIT(); oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE); for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { @@ -1324,9 +1462,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE); } - for (i = 0; i < 16; i++) { - a[i] = state.k[ i] ^ state.k[32 + i]; - b[i] = state.k[16 + i] ^ state.k[48 + i]; + for (i = 0; i < AES_BLOCK_SIZE; i++) { + a[i] = state.k[ i] ^ state.k[AES_BLOCK_SIZE * 2 + i]; + b[i] = state.k[AES_BLOCK_SIZE + i] ^ state.k[AES_BLOCK_SIZE * 3 + i]; } for (i = 0; i < ITER / 2; i++) { @@ -1335,26 +1473,32 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int * next address <-+ */ /* Iteration 1 */ - j = e2i(a, MEMORY / AES_BLOCK_SIZE); - copy_block(c, &long_state[j * AES_BLOCK_SIZE]); - aesb_single_round(c, c, a); - xor_blocks(b, c); - swap_blocks(b, c); - copy_block(&long_state[j * AES_BLOCK_SIZE], c); - assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE)); - swap_blocks(a, b); - VARIANT1_1(&long_state[j * AES_BLOCK_SIZE]); + j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; + copy_block(c1, &long_state[j]); + aesb_single_round(c1, c1, a); + VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); + copy_block(&long_state[j], c1); + xor_blocks(&long_state[j], b); + assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE); + VARIANT1_1(&long_state[j]); /* Iteration 2 */ - j = e2i(a, MEMORY / AES_BLOCK_SIZE); - copy_block(c, &long_state[j * AES_BLOCK_SIZE]); - mul(a, c, d); - sum_half_blocks(b, d); - swap_blocks(b, c); - xor_blocks(b, c); - VARIANT1_2(c + 8); - copy_block(&long_state[j * AES_BLOCK_SIZE], c); - assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE)); - swap_blocks(a, b); + j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; + copy_block(c2, &long_state[j]); + VARIANT2_PORTABLE_INTEGER_MATH(c2, c1); + mul(c1, c2, d); + VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); + swap_blocks(a, c1); + sum_half_blocks(c1, d); + swap_blocks(c1, c2); + xor_blocks(c1, c2); + VARIANT1_2(c2 + 8); + copy_block(&long_state[j], c2); + assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE); + if (variant >= 2) { + copy_block(b + AES_BLOCK_SIZE, b); + } + copy_block(b, a); + copy_block(a, c1); } memcpy(text, state.init, INIT_SIZE_BYTE); |