aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/shen_ed25519_ref/ietf.txt
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/crypto/shen_ed25519_ref/ietf.txt1402
1 files changed, 1402 insertions, 0 deletions
diff --git a/src/crypto/shen_ed25519_ref/ietf.txt b/src/crypto/shen_ed25519_ref/ietf.txt
new file mode 100644
index 000000000..0736f71ec
--- /dev/null
+++ b/src/crypto/shen_ed25519_ref/ietf.txt
@@ -0,0 +1,1402 @@
+
+
+[Docs] [txt|pdf] [Tracker] [Email] [Diff1] [Diff2] [Nits]
+
+Versions: 00 01 02
+
+Network Working Group S. Josefsson
+Internet-Draft SJD AB
+Intended status: Informational N. Moeller
+Expires: August 26, 2015
+ February 22, 2015
+
+
+ EdDSA and Ed25519
+
+ draft-josefsson-eddsa-ed25519-02
+
+
+Abstract
+
+ The elliptic curve signature scheme EdDSA and one instance of it
+ called Ed25519 is described. An example implementation and test
+ vectors are provided.
+
+Status of This Memo
+
+ This Internet-Draft is submitted in full conformance with the
+ provisions of BCP 78 and BCP 79.
+
+ Internet-Drafts are working documents of the Internet Engineering
+ Task Force (IETF). Note that other groups may also distribute
+ working documents as Internet-Drafts. The list of current Internet-
+ Drafts is at http://datatracker.ietf.org/drafts/current/.
+
+ Internet-Drafts are draft documents valid for a maximum of six months
+ and may be updated, replaced, or obsoleted by other documents at any
+ time. It is inappropriate to use Internet-Drafts as reference
+ material or to cite them other than as "work in progress."
+
+ This Internet-Draft will expire on August 26, 2015.
+
+Copyright Notice
+
+ Copyright (c) 2015 IETF Trust and the persons identified as the
+ document authors. All rights reserved.
+
+ This document is subject to BCP 78 and the IETF Trust's Legal
+ Provisions Relating to IETF Documents
+ (http://trustee.ietf.org/license-info) in effect on the date of
+ publication of this document. Please review these documents
+ carefully, as they describe your rights and restrictions with respect
+ to this document. Code Components extracted from this document must
+ include Simplified BSD License text as described in Section 4.e of
+ the Trust Legal Provisions and are provided without warranty as
+ described in the Simplified BSD License.
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 1]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+Table of Contents
+
+ 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
+ 2. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
+ 3. Background . . . . . . . . . . . . . . . . . . . . . . . . . 3
+ 4. EdDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
+ 4.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . . 4
+ 4.2. Keys . . . . . . . . . . . . . . . . . . . . . . . . . . 5
+ 4.3. Sign . . . . . . . . . . . . . . . . . . . . . . . . . . 5
+ 4.4. Verify . . . . . . . . . . . . . . . . . . . . . . . . . 5
+ 5. Ed25519 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
+ 5.1. Modular arithmetic . . . . . . . . . . . . . . . . . . . 6
+ 5.2. Encoding . . . . . . . . . . . . . . . . . . . . . . . . 6
+ 5.3. Decoding . . . . . . . . . . . . . . . . . . . . . . . . 6
+ 5.4. Point addition . . . . . . . . . . . . . . . . . . . . . 7
+ 5.5. Key Generation . . . . . . . . . . . . . . . . . . . . . 8
+ 5.6. Sign . . . . . . . . . . . . . . . . . . . . . . . . . . 8
+ 5.7. Verify . . . . . . . . . . . . . . . . . . . . . . . . . 9
+ 5.8. Python illustration . . . . . . . . . . . . . . . . . . . 9
+ 6. Test Vectors for Ed25519 . . . . . . . . . . . . . . . . . . 14
+ 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 17
+ 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 18
+ 9. Security Considerations . . . . . . . . . . . . . . . . . . . 18
+ 9.1. Side-channel leaks . . . . . . . . . . . . . . . . . . . 18
+ 10. References . . . . . . . . . . . . . . . . . . . . . . . . . 18
+ 10.1. Normative References . . . . . . . . . . . . . . . . . . 18
+ 10.2. Informative References . . . . . . . . . . . . . . . . . 18
+ Appendix A. Ed25519 Python Library . . . . . . . . . . . . . . . 19
+ Appendix B. Library driver . . . . . . . . . . . . . . . . . . . 23
+ Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 24
+
+1. Introduction
+
+
+ The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of
+ Schnorr's signature system with Twisted Edwards curves. EdDSA needs
+ to be instantiated with certain parameters and this document describe
+ Ed25519 - an instantiation of EdDSA in a curve over GF(2^255-19). To
+ facilitate adoption in the Internet community of Ed25519, this
+ document describe the signature scheme in an implementation-oriented
+ way, and we provide sample code and test vectors.
+
+ The advantages with EdDSA and Ed25519 include:
+
+ 1. High-performance on a variety of platforms.
+
+ 2. Does not require the use of a unique random number for each
+ signature.
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 2]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ 3. More resilient to side-channel attacks.
+
+ 4. Small public keys (32 bytes) and signatures (64 bytes).
+
+ 5. The formulas are "strongly unified", i.e., they are valid for all
+ points on the curve, with no exceptions. This obviates the need
+ for EdDSA to perform expensive point validation on untrusted
+ public values.
+
+ 6. Collision resilience, meaning that hash-function collisions do
+ not break this system.
+
+ For further background, see the original EdDSA paper [EDDSA].
+
+2. Notation
+
+
+ The following notation is used throughout the document:
+
+ GF(p) finite field with p elements
+
+ x^y x multiplied by itself y times
+
+ B generator of the group or subgroup of interest
+
+ n B B added to itself n times.
+
+ h_i the i'th bit of h
+
+ a || b (bit-)string a concatenated with (bit-)string b
+
+3. Background
+
+
+ EdDSA is defined using an elliptic curve over GF(p) of the form
+
+ -x^2 + y^2 = 1 + d x^2 y^2
+
+ In general, p could be a prime power, but it is usually chosen as a
+ prime number. It is required that p = 1 modulo 4 (which implies that
+ -1 is a square modulo p) and that d is a non-square modulo p. For
+ Ed25519, the curve used is equivalent to Curve25519 [CURVE25519],
+ under a change of coordinates, which means that the difficulty of the
+ discrete logarithm problem is the same as for Curve25519.
+
+ Points on this curve form a group under addition, (x3, y3) = (x1, y1)
+ + (x2, y2), with the formulas
+
+
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 3]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ x1 y2 + x2 y1 y1 y2 + x1 x2
+ x3 = -------------------, y3 = -------------------
+ 1 + d x1 x2 y1 y2 1 - d x1 x2 y1 y2
+
+ The neutral element in the group is (0, 1).
+
+ Unlike manyy other curves used for cryptographic applications, these
+ formulas are "strongly unified": they are valid for all points on the
+ curve, with no exceptions. In particular, the denominators are non-
+ zero for all input points.
+
+ There are more efficient formulas, which are still strongly unified,
+ which use homogeneous coordinates to avoid the expensive modulo p
+ inversions. See [Faster-ECC] and [Edwards-revisited].
+
+4. EdDSA
+
+
+ EdDSA is a digital signature system with several parameters. The
+ generic EdDSA digital signature system is normally not implemented
+ directly, but instead a particular instance of EdDSA (like Ed25519)
+ is implemented. A precise explanation of the generic EdDSA is thus
+ not particulary useful for implementers, but for background and
+ completeness, a succint description of the generic EdDSA algorithm is
+ given here.
+
+ EdDSA has seven parameters:
+
+ 1. an integer b >= 10.
+
+ 2. a cryptographic hash function H producing 2b-bit outputs.
+
+ 3. a prime power p congruent to 1 modulo 4.
+
+ 4. a (b-1)-bit encoding of elements of the finite field GF(p).
+
+ 5. a non-square element d of GF(p)
+
+ 6. an element B != (0,1) of the set E = { (x,y) is a member of GF(p)
+ x GF(p) such that -x^2 + y^2 = 1 + dx^2y^2 }.
+
+ 7. a prime q, of size b-3 bits, such that qB = (0, 1), i.e., q is
+ the order of B or a multiple thereof.
+
+4.1. Encoding
+
+
+ An element (x,y) of E is encoded as a b-bit string called ENC(x,y)
+ which is the (b-1)-bit encoding of y concatenated with one bit that
+ is 1 if x is negative and 0 if x is not negative. Negative elements
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 4]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ of GF(q) are those x which the (b-1)-bit encoding of x is
+ lexicographically larger than the (b-1)-bit encoding of -x.
+
+4.2. Keys
+
+
+ An EdDSA secret key is a b-bit string k. Let the hash H(k) = (h_0,
+ h_1, ..., h_(2b-1)) determine an integer a which is 2^(b-2) plus the
+ sum of m = 2^i * h_i for all i equal or larger than 3 and equal to or
+ less than b-3 such that m is a member of the set { 2^(b-2), 2^(b-2) +
+ 8, ..., 2^(b-1) - 8 }. The EdDSA public key is ENC(A) = ENC(aB).
+ The bits h_b, ..., h_(2b-1) is used below during signing.
+
+4.3. Sign
+
+
+ The signature of a message M under a secret key k is the 2b-bit
+ string ENC(R) || ENC'(S), where ENC'(S) is defined as the b-bit
+ little-endian encoding of S. R and S are derived as follows. First
+ define r = H(h_b, ... h_(2b-1)), M) interpreting 2b-bit strings in
+ little-endian form as integers in {0, 1, ..., 2^(2b)-1}. Let R=rB
+ and S=(r+H(ENC(R) || ENC(A) || M)a) mod l.
+
+4.4. Verify
+
+
+ To verify a signature ENC(R) || ENC'(S) on a message M under a public
+ key ENC(A), proceed as follows. Parse the inputs so that A and R is
+ an element of E, and S is a member of the set {0, 1, ..., l-1 }.
+ Compute H' = H(ENC(R) || ENC(A) || M) and check the group equation
+ 8SB = 8R + 8H'A in E. Verification is rejected if parsing fails or
+ the group equation does not hold.
+
+5. Ed25519
+
+
+ Theoretically, Ed25519 is EdDSA instantiated with b=256, H being
+ SHA-512 [RFC4634], p is the prime 2^255-19, the 255-bit encoding of
+ GF(2^255-19) being the little-endian encoding of {0, 1, ...,
+ 2^255-20}, q is the prime 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed,
+ d = -121665/121666 which is a member of GF(p), and B is the unique
+ point (x, 4/5) in E for which x is "positive", which with the
+ encoding used simply means that the least significant bit of x is 0.
+ The curve p, prime q, d and B follows from [I-D.irtf-cfrg-curves].
+
+ Written out explicitly, B is the point (15112221349535400772501151409
+ 588531511454012693041857206046113283949847762202, 4631683569492647816
+ 9428394003475163141307993866256225615783033603165251855960).
+
+
+
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 5]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+5.1. Modular arithmetic
+
+
+ For advise on how to implement arithmetic modulo p = 2^255 - 1
+ efficiently and securely, see Curve25519 [CURVE25519]. For inversion
+ modulo p, it is recommended to use the identity x^-1 = x^(p-2) (mod
+ p).
+
+ For point decoding or "decompression", square roots modulo p are
+ needed. They can be computed using the Tonelli-Shanks algorithm, or
+ the special case for p = 5 (mod 8). To find a square root of a,
+ first compute the candidate root x = a^((p+3)/8) (mod p). Then there
+ are three cases:
+
+ x^2 = a (mod p). Then x is a square root.
+
+ x^2 = -a (mod p). Then 2^((p-1)/4) x is a square root.
+
+ a is not a square modulo p.
+
+5.2. Encoding
+
+
+ All values are coded as octet strings, and integers are coded using
+ little endian convention. I.e., a 32-octet string h h[0],...h[31]
+ represents the integer h[0] + 2^8 h[1] + ... + 2^248 h[31].
+
+ A curve point (x,y), with coordiantes in the range 0 <= x,y < p, is
+ coded as follows. First encode the y-coordinate as a little-endian
+ string of 32 octets. The most significant bit of the final octet is
+ always zero. To form the encoding of the point, copy the least
+ significant bit of the x-coordinate to the most significant bit of
+ the final octet.
+
+5.3. Decoding
+
+
+ Decoding a point, given as a 32-octet string, is a little more
+ complicated.
+
+ 1. First interpret the string as an integer in little-endian
+ representation. Bit 255 of this number is the least significant
+ bit of the x-coordinate, and denote this value x_0. The
+ y-coordinate is recovered simply by clearing this bit. If the
+ resulting value is >= p, decoding fails.
+
+ 2. To recover the x coordinate, the curve equation implies x^2 =
+ (y^2 - 1) / (d y^2 + 1) (mod p). Since d is a non-square and -1
+ is a square, the numerator, (d y^2 + 1), is always invertible
+ modulo p. Let u = y^2 - 1 and v = d y^2 + 1. To compute the
+ square root of (u/v), the first step is to compute the candidate
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 6]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ root x = (u/v)^((p+3)/8). This can be done using the following
+ trick, to use a single modular powering for both the inversion of
+ v and the square root:
+
+ (p+3)/8 3 (p-5)/8
+ x = (u/v) = u v (u v^7) (mod p)
+
+ 3. Again, there are three cases:
+
+ 1. If v x^2 = u (mod p), x is a square root.
+
+ 2. If v x^2 = -u (mod p), set x <-- x 2^((p-1)/4), which is a
+ square root.
+
+ 3. Otherwise, no square root exists modulo p, and decoding
+ fails.
+
+ 4. Finally, use the x_0 bit to select the right square root. If x =
+ 0, and x_0 = 1, decoding fails. Otherwise, if x_0 != x mod 2,
+ set x <-- p - x. Return the decoded point (x,y).
+
+5.4. Point addition
+
+
+ For point addition, the following method is recommended. A point
+ (x,y) is represented in extended homogeneous coordinates (X, Y, Z,
+ T), with x = X/Z, y = Y/Z, x y = T/Z.
+
+ The following formulas for adding two points, (x3,y3) =
+ (x1,y1)+(x2,y2) are described in [Edwards-revisited], section 3.1.
+ They are strongly unified, i.e., they work for any pair of valid
+ input points.
+
+ A = (Y1-X1)*(Y2-X2)
+ B = (Y1+X1)*(Y2+X2)
+ C = T1*2*d*T2
+ D = Z1*2*Z2
+ E = B-A
+ F = D-C
+ G = D+C
+ H = B+A
+ X3 = E*F
+ Y3 = G*H
+ T3 = E*H
+ Z3 = F*G
+
+
+
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 7]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+5.5. Key Generation
+
+
+ The secret is 32 octets (256 bits, corresponding to b) of
+ cryptographically-secure random data. See [RFC4086] for a discussion
+ about randomness.
+
+ The 32-byte public key is generated by the following steps.
+
+ 1. Hash the 32-byte secret using SHA-512, storing the digest in a
+ 64-octet large buffer, denoted h. Only the lower 32 bytes are
+ used for generating the public key.
+
+ 2. Prune the buffer. In C terminology:
+
+ h[0] &= ~0x07;
+ h[31] &= 0x7F;
+ h[31] |= 0x40;
+
+ 3. Interpret the buffer as the little-endian integer, forming a
+ secret scalar a. Perform a known-base-point scalar
+ multiplication a B.
+
+ 4. The public key A is the encoding of the point aB. First encode
+ the y coordinate (in the range 0 <= y < p) as a little-endian
+ string of 32 octets. The most significant bit of the final octet
+ is always zero. To form the encoding of the point aB, copy the
+ least significant bit of the x coordinate to the most significant
+ bit of the final octet. The result is the public key.
+
+5.6. Sign
+
+
+ The imputs to the signing procedure is the secret key, a 32-octet
+ string, and a message M of arbitrary size.
+
+ 1. Hash the secret key, 32-octets, using SHA-512. Let h denote the
+ resulting digest. Construct the secret scalar a from the first
+ half of the digest, and the corresponding public key A, as
+ described in the previous section. Let prefix denote the second
+ half of the hash digest, h[32],...,h[63].
+
+ 2. Compute SHA-512(prefix || M), where M is the message to be
+ signed. Interpret the 64-octet digest as a little-endian integer
+ r.
+
+ 3. Compute the point rB. For efficiency, do this by first reducing
+ r modulo q, the group order of B. Let the string R be the
+ encoding of this point.
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 8]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ 4. Compute SHA512(R || A || M), and interpret the 64-octet digest as
+ a little-endian integer k.
+
+ 5. Compute s = (r + k a) mod q. For efficiency, again reduce k
+ modulo q first.
+
+ 6. Form the signature of the concatenation of R (32 octets) and the
+ little-endian encoding of s (32 octets, three most significant
+ bits of the final octets always zero).
+
+5.7. Verify
+
+
+ 1. To verify a signature on a message M, first split the signature
+ into two 32-octet halves. Decode the first half as a point R,
+ and the second half as an integer s, in the range 0 <= s < q. If
+ the decoding fails, the signature is invalid.
+
+ 2. Compute SHA512(R || A || M), and interpret the 64-octet digest as
+ a little-endian integer k.
+
+ 3. Check the group equation 8s B = 8 R + 8k A. It's sufficient, but
+ not required, to instead check s B = R + k A.
+
+5.8. Python illustration
+
+
+ The rest of this section describes how Ed25519 can be implemented in
+ Python (version 3.2 or later) for illustration. See appendix A for
+ the complete implementation and appendix B for a test-driver to run
+ it through some test vectors.
+
+ First some preliminaries that will be needed.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 9]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ import hashlib
+
+ def sha512(s):
+ return hashlib.sha512(s).digest()
+
+ # Base field Z_p
+ p = 2**255 - 19
+
+ def modp_inv(x):
+ return pow(x, p-2, p)
+
+ # Curve constant
+ d = -121665 * modp_inv(121666) % p
+
+ # Group order
+ q = 2**252 + 27742317777372353535851937790883648493
+
+ def sha512_modq(s):
+ return int.from_bytes(sha512(s), "little") % q
+
+ Then follows functions to perform point operations.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 10]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
+# with x = X/Z, y = Y/Z, x*y = T/Z
+
+def point_add(P, Q):
+ A = (P[1]-P[0])*(Q[1]-Q[0]) % p
+ B = (P[1]+P[0])*(Q[1]+Q[0]) % p
+ C = 2 * P[3] * Q[3] * d % p
+ D = 2 * P[2] * Q[2] % p
+ E = B-A
+ F = D-C
+ G = D+C
+ H = B+A
+ return (E*F, G*H, F*G, E*H)
+
+# Computes Q = s * Q
+def point_mul(s, P):
+ Q = (0, 1, 1, 0) # Neutral element
+ while s > 0:
+ # Is there any bit-set predicate?
+ if s & 1:
+ Q = point_add(Q, P)
+ P = point_add(P, P)
+ s >>= 1
+ return Q
+
+def point_equal(P, Q):
+ # x1 / z1 == x2 / z2 <==> x1 * z2 == x2 * z1
+ if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
+ return False
+ if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
+ return False
+ return True
+
+ Now follows functions for point compression.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 11]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+# Square root of -1
+modp_sqrt_m1 = pow(2, (p-1) // 4, p)
+
+# Compute corresponding x coordinate, with low bit corresponding to sign,
+# or return None on failure
+def recover_x(y, sign):
+ x2 = (y*y-1) * modp_inv(d*y*y+1)
+ if x2 == 0:
+ if sign:
+ return None
+ else:
+ return 0
+
+ # Compute square root of x2
+ x = pow(x2, (p+3) // 8, p)
+ if (x*x - x2) % p != 0:
+ x = x * modp_sqrt_m1 % p
+ if (x*x - x2) % p != 0:
+ return None
+
+ if (x & 1) != sign:
+ x = p - x
+ return x
+
+# Base point
+g_y = 4 * modp_inv(5) % p
+g_x = recover_x(g_y, 0)
+G = (g_x, g_y, 1, g_x * g_y % p)
+
+def point_compress(P):
+ zinv = modp_inv(P[2])
+ x = P[0] * zinv % p
+ y = P[1] * zinv % p
+ return int.to_bytes(y | ((x & 1) << 255), 32, "little")
+
+def point_decompress(s):
+ if len(s) != 32:
+ raise Exception("Invalid input length for decompression")
+ y = int.from_bytes(s, "little")
+ sign = y >> 255
+ y &= (1 << 255) - 1
+
+ x = recover_x(y, sign)
+ if x is None:
+ return None
+ else:
+ return (x, y, 1, x*y % p)
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 12]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ These are functions for manipulating the secret.
+
+ def secret_expand(secret):
+ if len(secret) != 32:
+ raise Exception("Bad size of private key")
+ h = sha512(secret)
+ a = int.from_bytes(h[:32], "little")
+ a &= (1 << 254) - 8
+ a |= (1 << 254)
+ return (a, h[32:])
+
+ def secret_to_public(secret):
+ (a, dummy) = secret_expand(secret)
+ return point_compress(point_mul(a, G))
+
+ The signature function works as below.
+
+ def sign(secret, msg):
+ a, prefix = secret_expand(secret)
+ A = point_compress(point_mul(a, G))
+ r = sha512_modq(prefix + msg)
+ R = point_mul(r, G)
+ Rs = point_compress(R)
+ h = sha512_modq(Rs + A + msg)
+ s = (r + h * a) % q
+ return Rs + int.to_bytes(s, 32, "little")
+
+ And finally the verification function.
+
+ def verify(public, msg, signature):
+ if len(public) != 32:
+ raise Exception("Bad public-key length")
+ if len(signature) != 64:
+ Exception("Bad signature length")
+ A = point_decompress(public)
+ if not A:
+ return False
+ Rs = signature[:32]
+ R = point_decompress(Rs)
+ if not R:
+ return False
+ s = int.from_bytes(signature[32:], "little")
+ h = sha512_modq(Rs + public + msg)
+ sB = point_mul(s, G)
+ hA = point_mul(h, A)
+ return point_equal(sB, point_add(R, hA))
+
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 13]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+6. Test Vectors for Ed25519
+
+
+ Below is a sequence of octets with test vectors for the the Ed25519
+ signature algorithm. The octets are hex encoded and whitespace is
+ inserted for readability. Private keys are 64 bytes, public keys 32
+ bytes, message of arbitrary length, and signatures are 64 bytes. The
+ test vectors are taken from [ED25519-TEST-VECTORS] (but we removed
+ the public key as a suffix of the secret key, and removed the message
+ from the signature) and [ED25519-LIBGCRYPT-TEST-VECTORS].
+
+ -----TEST 1
+ SECRET KEY:
+ 9d61b19deffd5a60ba844af492ec2cc4
+ 4449c5697b326919703bac031cae7f60
+
+ PUBLIC KEY:
+ d75a980182b10ab7d54bfed3c964073a
+ 0ee172f3daa62325af021a68f707511a
+
+ MESSAGE (length 0 bytes):
+
+ SIGNATURE:
+ e5564300c360ac729086e2cc806e828a
+ 84877f1eb8e5d974d873e06522490155
+ 5fb8821590a33bacc61e39701cf9b46b
+ d25bf5f0595bbe24655141438e7a100b
+
+ -----TEST 2
+ SECRET KEY:
+ 4ccd089b28ff96da9db6c346ec114e0f
+ 5b8a319f35aba624da8cf6ed4fb8a6fb
+
+ PUBLIC KEY:
+ 3d4017c3e843895a92b70aa74d1b7ebc
+ 9c982ccf2ec4968cc0cd55f12af4660c
+
+ MESSAGE (length 1 byte):
+ 72
+
+ SIGNATURE:
+ 92a009a9f0d4cab8720e820b5f642540
+ a2b27b5416503f8fb3762223ebdb69da
+ 085ac1e43e15996e458f3613d0f11d8c
+ 387b2eaeb4302aeeb00d291612bb0c00
+
+ -----TEST 3
+ SECRET KEY:
+ c5aa8df43f9f837bedb7442f31dcb7b1
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 14]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ 66d38535076f094b85ce3a2e0b4458f7
+
+ PUBLIC KEY:
+ fc51cd8e6218a1a38da47ed00230f058
+ 0816ed13ba3303ac5deb911548908025
+
+ MESSAGE (length 2 bytes):
+ af82
+
+ SIGNATURE:
+ 6291d657deec24024827e69c3abe01a3
+ 0ce548a284743a445e3680d7db5ac3ac
+ 18ff9b538d16f290ae67f760984dc659
+ 4a7c15e9716ed28dc027beceea1ec40a
+
+ -----TEST 1024
+ SECRET KEY:
+ f5e5767cf153319517630f226876b86c
+ 8160cc583bc013744c6bf255f5cc0ee5
+
+ PUBLIC KEY:
+ 278117fc144c72340f67d0f2316e8386
+ ceffbf2b2428c9c51fef7c597f1d426e
+
+ MESSAGE:
+ 08b8b2b733424243760fe426a4b54908
+ 632110a66c2f6591eabd3345e3e4eb98
+ fa6e264bf09efe12ee50f8f54e9f77b1
+ e355f6c50544e23fb1433ddf73be84d8
+ 79de7c0046dc4996d9e773f4bc9efe57
+ 38829adb26c81b37c93a1b270b20329d
+ 658675fc6ea534e0810a4432826bf58c
+ 941efb65d57a338bbd2e26640f89ffbc
+ 1a858efcb8550ee3a5e1998bd177e93a
+ 7363c344fe6b199ee5d02e82d522c4fe
+ ba15452f80288a821a579116ec6dad2b
+ 3b310da903401aa62100ab5d1a36553e
+ 06203b33890cc9b832f79ef80560ccb9
+ a39ce767967ed628c6ad573cb116dbef
+ efd75499da96bd68a8a97b928a8bbc10
+ 3b6621fcde2beca1231d206be6cd9ec7
+ aff6f6c94fcd7204ed3455c68c83f4a4
+ 1da4af2b74ef5c53f1d8ac70bdcb7ed1
+ 85ce81bd84359d44254d95629e9855a9
+ 4a7c1958d1f8ada5d0532ed8a5aa3fb2
+ d17ba70eb6248e594e1a2297acbbb39d
+ 502f1a8c6eb6f1ce22b3de1a1f40cc24
+ 554119a831a9aad6079cad88425de6bd
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 15]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ e1a9187ebb6092cf67bf2b13fd65f270
+ 88d78b7e883c8759d2c4f5c65adb7553
+ 878ad575f9fad878e80a0c9ba63bcbcc
+ 2732e69485bbc9c90bfbd62481d9089b
+ eccf80cfe2df16a2cf65bd92dd597b07
+ 07e0917af48bbb75fed413d238f5555a
+ 7a569d80c3414a8d0859dc65a46128ba
+ b27af87a71314f318c782b23ebfe808b
+ 82b0ce26401d2e22f04d83d1255dc51a
+ ddd3b75a2b1ae0784504df543af8969b
+ e3ea7082ff7fc9888c144da2af58429e
+ c96031dbcad3dad9af0dcbaaaf268cb8
+ fcffead94f3c7ca495e056a9b47acdb7
+ 51fb73e666c6c655ade8297297d07ad1
+ ba5e43f1bca32301651339e22904cc8c
+ 42f58c30c04aafdb038dda0847dd988d
+ cda6f3bfd15c4b4c4525004aa06eeff8
+ ca61783aacec57fb3d1f92b0fe2fd1a8
+ 5f6724517b65e614ad6808d6f6ee34df
+ f7310fdc82aebfd904b01e1dc54b2927
+ 094b2db68d6f903b68401adebf5a7e08
+ d78ff4ef5d63653a65040cf9bfd4aca7
+ 984a74d37145986780fc0b16ac451649
+ de6188a7dbdf191f64b5fc5e2ab47b57
+ f7f7276cd419c17a3ca8e1b939ae49e4
+ 88acba6b965610b5480109c8b17b80e1
+ b7b750dfc7598d5d5011fd2dcc5600a3
+ 2ef5b52a1ecc820e308aa342721aac09
+ 43bf6686b64b2579376504ccc493d97e
+ 6aed3fb0f9cd71a43dd497f01f17c0e2
+ cb3797aa2a2f256656168e6c496afc5f
+ b93246f6b1116398a346f1a641f3b041
+ e989f7914f90cc2c7fff357876e506b5
+ 0d334ba77c225bc307ba537152f3f161
+ 0e4eafe595f6d9d90d11faa933a15ef1
+ 369546868a7f3a45a96768d40fd9d034
+ 12c091c6315cf4fde7cb68606937380d
+ b2eaaa707b4c4185c32eddcdd306705e
+ 4dc1ffc872eeee475a64dfac86aba41c
+ 0618983f8741c5ef68d3a101e8a3b8ca
+ c60c905c15fc910840b94c00a0b9d0
+
+ SIGNATURE:
+ 0aab4c900501b3e24d7cdf4663326a3a
+ 87df5e4843b2cbdb67cbf6e460fec350
+ aa5371b1508f9f4528ecea23c436d94b
+ 5e8fcd4f681e30a6ac00a9704a188a03
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 16]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ -----TEST 1A
+ -----An additional test with the data from test 1 but using an
+ -----uncompressed public key.
+ SECRET KEY:
+ 9d61b19deffd5a60ba844af492ec2cc4
+ 4449c5697b326919703bac031cae7f60
+
+ PUBLIC KEY:
+ 0455d0e09a2b9d34292297e08d60d0f6
+ 20c513d47253187c24b12786bd777645
+ ce1a5107f7681a02af2523a6daf372e1
+ 0e3a0764c9d3fe4bd5b70ab18201985a
+ d7
+
+ MSG (length 0 bytes):
+
+ SIGNATURE:
+ e5564300c360ac729086e2cc806e828a
+ 84877f1eb8e5d974d873e06522490155
+ 5fb8821590a33bacc61e39701cf9b46b
+ d25bf5f0595bbe24655141438e7a100b
+
+ -----TEST 1B
+ -----An additional test with the data from test 1 but using an
+ -----compressed prefix.
+ SECRET KEY:
+ 9d61b19deffd5a60ba844af492ec2cc4
+ 4449c5697b326919703bac031cae7f60
+
+ PUBLIC KEY:
+ 40d75a980182b10ab7d54bfed3c96407
+ 3a0ee172f3daa62325af021a68f70751
+ 1a
+
+ MESSAGE (length 0 bytes):
+
+ SIGNATURE:
+ e5564300c360ac729086e2cc806e828a
+ 84877f1eb8e5d974d873e06522490155
+ 5fb8821590a33bacc61e39701cf9b46b
+ d25bf5f0595bbe24655141438e7a100b
+ -----
+
+7. Acknowledgements
+
+
+ Feedback on this document was received from Werner Koch and Damien
+ Miller.
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 17]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+8. IANA Considerations
+
+
+ None.
+
+9. Security Considerations
+
+
+9.1. Side-channel leaks
+
+
+ For implementations performing signatures, secrecy of the key is
+ fundamental. It is possible to protect against some side-channel
+ attacks by ensuring that the implementation executes exactly the same
+ sequence of instructions and performs exactly the same memory
+ accesses, for any value of the secret key.
+
+ To make an implementation side-channel silent in this way, the modulo
+ p arithmetic must not use any data-dependent branches, e.g., related
+ to carry propagation. Side channel-silent point addition is
+ straight-forward, thanks to the unified formulas.
+
+ Scalar multiplication, multiplying a point by an integer, needs some
+ additional effort to implement in a side-channel silent manner. One
+ simple approach is to implement a side-channel silent conditional
+ assignment, and use together with the binary algorithm to examine one
+ bit of the integer at a time.
+
+ Note that the example implementation in this document does not
+ attempt to be side-channel silent.
+
+10. References
+
+
+10.1. Normative References
+
+
+ [RFC4634] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
+ (SHA and HMAC-SHA)", RFC 4634, July 2006.
+
+ [I-D.irtf-cfrg-curves]
+ Langley, A., Salz, R., and S. Turner, "Elliptic Curves for
+ Security", draft-irtf-cfrg-curves-01 (work in progress),
+ January 2015.
+
+10.2. Informative References
+
+
+ [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
+ Requirements for Security", BCP 106, RFC 4086, June 2005.
+
+
+
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 18]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ [EDDSA] Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
+ Yang, "High-speed high-security signatures", WWW
+ http://ed25519.cr.yp.to/ed25519-20110926.pdf, September
+ 2011.
+
+ [Faster-ECC]
+ Bernstein, D. and T. Lange, "Faster addition and doubling
+ on elliptic curves", WWW http://eprint.iacr.org/2007/286,
+ July 2007.
+
+ [Edwards-revisited]
+ Hisil, H., Wong, K., Carter, G., and E. Dawson, "Twisted
+ Edwards Curves Revisited", WWW
+ http://eprint.iacr.org/2008/522, December 2008.
+
+ [CURVE25519]
+ Bernstein, D., "Curve25519: new Diffie-Hellman speed
+ records", WWW http://cr.yp.to/ecdh.html, February 2006.
+
+ [ED25519-TEST-VECTORS]
+ Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
+ Yang, "Ed25519 test vectors", WWW
+ http://ed25519.cr.yp.to/python/sign.input, July 2011.
+
+ [ED25519-LIBGCRYPT-TEST-VECTORS]
+ Koch, W., "Ed25519 Libgcrypt test vectors", WWW
+ http://git.gnupg.org/cgi-
+ bin/gitweb.cgi?p=libgcrypt.git;a=blob;f=tests/t-ed25519.in
+ p;h=e13566f826321eece65e02c593bc7d885b3dbe23;hb=refs/
+ heads/master, July 2014.
+
+Appendix A. Ed25519 Python Library
+
+
+ Below is an example implementation of Ed25519 written in Python,
+ version 3.2 or higher is required.
+
+# Loosely based on the public domain code at
+# http://ed25519.cr.yp.to/software.html
+#
+# Needs python-3.2
+
+import hashlib
+
+
+def sha512(s):
+ return hashlib.sha512(s).digest()
+
+# Base field Z_p
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 19]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+p = 2**255 - 19
+
+
+def modp_inv(x):
+ return pow(x, p-2, p)
+
+# Curve constant
+d = -121665 * modp_inv(121666) % p
+
+# Group order
+q = 2**252 + 27742317777372353535851937790883648493
+
+
+def sha512_modq(s):
+ return int.from_bytes(sha512(s), "little") % q
+
+# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
+# with x = X/Z, y = Y/Z, x*y = T/Z
+
+
+def point_add(P, Q):
+ A = (P[1]-P[0])*(Q[1]-Q[0]) % p
+ B = (P[1]+P[0])*(Q[1]+Q[0]) % p
+ C = 2 * P[3] * Q[3] * d % p
+ D = 2 * P[2] * Q[2] % p
+ E = B-A
+ F = D-C
+ G = D+C
+ H = B+A
+ return (E*F, G*H, F*G, E*H)
+
+
+# Computes Q = s * Q
+def point_mul(s, P):
+ Q = (0, 1, 1, 0) # Neutral element
+ while s > 0:
+ # Is there any bit-set predicate?
+ if s & 1:
+ Q = point_add(Q, P)
+ P = point_add(P, P)
+ s >>= 1
+ return Q
+
+
+def point_equal(P, Q):
+ # x1 / z1 == x2 / z2 <==> x1 * z2 == x2 * z1
+ if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
+ return False
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 20]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
+ return False
+ return True
+
+# Square root of -1
+modp_sqrt_m1 = pow(2, (p-1) // 4, p)
+
+
+# Compute corresponding x coordinate, with low bit corresponding to sign,
+# or return None on failure
+def recover_x(y, sign):
+ x2 = (y*y-1) * modp_inv(d*y*y+1)
+ if x2 == 0:
+ if sign:
+ return None
+ else:
+ return 0
+
+ # Compute square root of x2
+ x = pow(x2, (p+3) // 8, p)
+ if (x*x - x2) % p != 0:
+ x = x * modp_sqrt_m1 % p
+ if (x*x - x2) % p != 0:
+ return None
+
+ if (x & 1) != sign:
+ x = p - x
+ return x
+
+# Base point
+g_y = 4 * modp_inv(5) % p
+g_x = recover_x(g_y, 0)
+G = (g_x, g_y, 1, g_x * g_y % p)
+
+
+def point_compress(P):
+ zinv = modp_inv(P[2])
+ x = P[0] * zinv % p
+ y = P[1] * zinv % p
+ return int.to_bytes(y | ((x & 1) << 255), 32, "little")
+
+
+def point_decompress(s):
+ if len(s) != 32:
+ raise Exception("Invalid input length for decompression")
+ y = int.from_bytes(s, "little")
+ sign = y >> 255
+ y &= (1 << 255) - 1
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 21]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ x = recover_x(y, sign)
+ if x is None:
+ return None
+ else:
+ return (x, y, 1, x*y % p)
+
+
+def secret_expand(secret):
+ if len(secret) != 32:
+ raise Exception("Bad size of private key")
+ h = sha512(secret)
+ a = int.from_bytes(h[:32], "little")
+ a &= (1 << 254) - 8
+ a |= (1 << 254)
+ return (a, h[32:])
+
+
+def secret_to_public(secret):
+ (a, dummy) = secret_expand(secret)
+ return point_compress(point_mul(a, G))
+
+
+def sign(secret, msg):
+ a, prefix = secret_expand(secret)
+ A = point_compress(point_mul(a, G))
+ r = sha512_modq(prefix + msg)
+ R = point_mul(r, G)
+ Rs = point_compress(R)
+ h = sha512_modq(Rs + A + msg)
+ s = (r + h * a) % q
+ return Rs + int.to_bytes(s, 32, "little")
+
+
+def verify(public, msg, signature):
+ if len(public) != 32:
+ raise Exception("Bad public-key length")
+ if len(signature) != 64:
+ Exception("Bad signature length")
+ A = point_decompress(public)
+ if not A:
+ return False
+ Rs = signature[:32]
+ R = point_decompress(Rs)
+ if not R:
+ return False
+ s = int.from_bytes(signature[32:], "little")
+ h = sha512_modq(Rs + public + msg)
+ sB = point_mul(s, G)
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 22]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ hA = point_mul(h, A)
+ return point_equal(sB, point_add(R, hA))
+
+Appendix B. Library driver
+
+
+ Below is a command-line tool that uses the library above to perform
+ computations, for interactive use or for self-checking.
+
+ import sys
+ import binascii
+
+ from ed25519 import *
+
+ def point_valid(P):
+ zinv = modp_inv(P[2])
+ x = P[0] * zinv % p
+ y = P[1] * zinv % p
+ assert (x*y - P[3]*zinv) % p == 0
+ return (-x*x + y*y - 1 - d*x*x*y*y) % p == 0
+
+ assert point_valid(G)
+ Z = (0, 1, 1, 0)
+ assert point_valid(Z)
+
+ assert point_equal(Z, point_add(Z, Z))
+ assert point_equal(G, point_add(Z, G))
+ assert point_equal(Z, point_mul(0, G))
+ assert point_equal(G, point_mul(1, G))
+ assert point_equal(point_add(G, G), point_mul(2, G))
+ for i in range(0, 100):
+ assert point_valid(point_mul(i, G))
+ assert point_equal(Z, point_mul(q, G))
+
+ def munge_string(s, pos, change):
+ return (s[:pos] +
+ int.to_bytes(s[pos] ^ change, 1, "little") +
+ s[pos+1:])
+
+ # Read a file in the format of
+ # http://ed25519.cr.yp.to/python/sign.input
+ lineno = 0
+ while True:
+ line = sys.stdin.readline()
+ if not line:
+ break
+ lineno = lineno + 1
+ print(lineno)
+ fields = line.split(":")
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 23]
+
+
+Internet-Draft EdDSA & Ed25519 February 2015
+
+
+ secret = (binascii.unhexlify(fields[0]))[:32]
+ public = binascii.unhexlify(fields[1])
+ msg = binascii.unhexlify(fields[2])
+ signature = binascii.unhexlify(fields[3])[:64]
+
+ assert public == secret_to_public(secret)
+ assert signature == sign(secret, msg)
+ assert verify(public, msg, signature)
+ if len(msg) == 0:
+ bad_msg = b"x"
+ else:
+ bad_msg = munge_string(msg, len(msg) // 3, 4)
+ assert not verify(public, bad_msg, signature)
+ bad_signature = munge_string(signature, 20, 8)
+ assert not verify(public, msg, bad_signature)
+ bad_signature = munge_string(signature, 40, 16)
+ assert not verify(public, msg, bad_signature)
+
+Authors' Addresses
+
+ Simon Josefsson
+ SJD AB
+
+ Email: simon@josefsson.org
+ URI: http://josefsson.org/
+
+
+ Niels Moeller
+
+ Email: nisse@lysator.liu.se
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Josefsson & Moeller Expires August 26, 2015 [Page 24]
+
+
+
+Html markup produced by rfcmarkup 1.113, available from https://tools.ietf.org/tools/rfcmarkup/