aboutsummaryrefslogtreecommitdiff
path: root/external/unbound/services/mesh.h
diff options
context:
space:
mode:
Diffstat (limited to 'external/unbound/services/mesh.h')
-rw-r--r--external/unbound/services/mesh.h572
1 files changed, 572 insertions, 0 deletions
diff --git a/external/unbound/services/mesh.h b/external/unbound/services/mesh.h
new file mode 100644
index 000000000..fbfbbcb4a
--- /dev/null
+++ b/external/unbound/services/mesh.h
@@ -0,0 +1,572 @@
+/*
+ * services/mesh.h - deal with mesh of query states and handle events for that.
+ *
+ * Copyright (c) 2007, NLnet Labs. All rights reserved.
+ *
+ * This software is open source.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * Neither the name of the NLNET LABS nor the names of its contributors may
+ * be used to endorse or promote products derived from this software without
+ * specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
+ * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/**
+ * \file
+ *
+ * This file contains functions to assist in dealing with a mesh of
+ * query states. This mesh is supposed to be thread-specific.
+ * It consists of query states (per qname, qtype, qclass) and connections
+ * between query states and the super and subquery states, and replies to
+ * send back to clients.
+ */
+
+#ifndef SERVICES_MESH_H
+#define SERVICES_MESH_H
+
+#include "util/rbtree.h"
+#include "util/netevent.h"
+#include "util/data/msgparse.h"
+#include "util/module.h"
+#include "services/modstack.h"
+struct sldns_buffer;
+struct mesh_state;
+struct mesh_reply;
+struct mesh_cb;
+struct query_info;
+struct reply_info;
+struct outbound_entry;
+struct timehist;
+
+/**
+ * Maximum number of mesh state activations. Any more is likely an
+ * infinite loop in the module. It is then terminated.
+ */
+#define MESH_MAX_ACTIVATION 3000
+
+/**
+ * Max number of references-to-references-to-references.. search size.
+ * Any more is treated like 'too large', and the creation of a new
+ * dependency is failed (so that no loops can be created).
+ */
+#define MESH_MAX_SUBSUB 1024
+
+/**
+ * Mesh of query states
+ */
+struct mesh_area {
+ /** active module stack */
+ struct module_stack mods;
+ /** environment for new states */
+ struct module_env* env;
+
+ /** set of runnable queries (mesh_state.run_node) */
+ rbtree_t run;
+ /** rbtree of all current queries (mesh_state.node)*/
+ rbtree_t all;
+
+ /** count of the total number of mesh_reply entries */
+ size_t num_reply_addrs;
+ /** count of the number of mesh_states that have mesh_replies
+ * Because a state can send results to multiple reply addresses,
+ * this number must be equal or lower than num_reply_addrs. */
+ size_t num_reply_states;
+ /** number of mesh_states that have no mesh_replies, and also
+ * an empty set of super-states, thus are 'toplevel' or detached
+ * internal opportunistic queries */
+ size_t num_detached_states;
+ /** number of reply states in the forever list */
+ size_t num_forever_states;
+
+ /** max total number of reply states to have */
+ size_t max_reply_states;
+ /** max forever number of reply states to have */
+ size_t max_forever_states;
+
+ /** stats, cumulative number of reply states jostled out */
+ size_t stats_jostled;
+ /** stats, cumulative number of incoming client msgs dropped */
+ size_t stats_dropped;
+ /** number of replies sent */
+ size_t replies_sent;
+ /** sum of waiting times for the replies */
+ struct timeval replies_sum_wait;
+ /** histogram of time values */
+ struct timehist* histogram;
+ /** (extended stats) secure replies */
+ size_t ans_secure;
+ /** (extended stats) bogus replies */
+ size_t ans_bogus;
+ /** (extended stats) rcodes in replies */
+ size_t ans_rcode[16];
+ /** (extended stats) rcode nodata in replies */
+ size_t ans_nodata;
+
+ /** backup of query if other operations recurse and need the
+ * network buffers */
+ struct sldns_buffer* qbuf_bak;
+
+ /** double linked list of the run-to-completion query states.
+ * These are query states with a reply */
+ struct mesh_state* forever_first;
+ /** last entry in run forever list */
+ struct mesh_state* forever_last;
+
+ /** double linked list of the query states that can be jostled out
+ * by new queries if too old. These are query states with a reply */
+ struct mesh_state* jostle_first;
+ /** last entry in jostle list - this is the entry that is newest */
+ struct mesh_state* jostle_last;
+ /** timeout for jostling. if age is lower, it does not get jostled. */
+ struct timeval jostle_max;
+};
+
+/**
+ * A mesh query state
+ * Unique per qname, qtype, qclass (from the qstate).
+ * And RD / CD flag; in case a client turns it off.
+ * And priming queries are different from ordinary queries (because of hints).
+ *
+ * The entire structure is allocated in a region, this region is the qstate
+ * region. All parts (rbtree nodes etc) are also allocated in the region.
+ */
+struct mesh_state {
+ /** node in mesh_area all tree, key is this struct. Must be first. */
+ rbnode_t node;
+ /** node in mesh_area runnable tree, key is this struct */
+ rbnode_t run_node;
+ /** the query state. Note that the qinfo and query_flags
+ * may not change. */
+ struct module_qstate s;
+ /** the list of replies to clients for the results */
+ struct mesh_reply* reply_list;
+ /** the list of callbacks for the results */
+ struct mesh_cb* cb_list;
+ /** set of superstates (that want this state's result)
+ * contains struct mesh_state_ref* */
+ rbtree_t super_set;
+ /** set of substates (that this state needs to continue)
+ * contains struct mesh_state_ref* */
+ rbtree_t sub_set;
+ /** number of activations for the mesh state */
+ size_t num_activated;
+
+ /** previous in linked list for reply states */
+ struct mesh_state* prev;
+ /** next in linked list for reply states */
+ struct mesh_state* next;
+ /** if this state is in the forever list, jostle list, or neither */
+ enum mesh_list_select { mesh_no_list, mesh_forever_list,
+ mesh_jostle_list } list_select;
+
+ /** true if replies have been sent out (at end for alignment) */
+ uint8_t replies_sent;
+};
+
+/**
+ * Rbtree reference to a mesh_state.
+ * Used in super_set and sub_set.
+ */
+struct mesh_state_ref {
+ /** node in rbtree for set, key is this structure */
+ rbnode_t node;
+ /** the mesh state */
+ struct mesh_state* s;
+};
+
+/**
+ * Reply to a client
+ */
+struct mesh_reply {
+ /** next in reply list */
+ struct mesh_reply* next;
+ /** the query reply destination, packet buffer and where to send. */
+ struct comm_reply query_reply;
+ /** edns data from query */
+ struct edns_data edns;
+ /** the time when request was entered */
+ struct timeval start_time;
+ /** id of query, in network byteorder. */
+ uint16_t qid;
+ /** flags of query, for reply flags */
+ uint16_t qflags;
+ /** qname from this query. len same as mesh qinfo. */
+ uint8_t* qname;
+};
+
+/**
+ * Mesh result callback func.
+ * called as func(cb_arg, rcode, buffer_with_reply, security, why_bogus);
+ */
+typedef void (*mesh_cb_func_t)(void*, int, struct sldns_buffer*, enum sec_status,
+ char*);
+
+/**
+ * Callback to result routine
+ */
+struct mesh_cb {
+ /** next in list */
+ struct mesh_cb* next;
+ /** edns data from query */
+ struct edns_data edns;
+ /** id of query, in network byteorder. */
+ uint16_t qid;
+ /** flags of query, for reply flags */
+ uint16_t qflags;
+ /** buffer for reply */
+ struct sldns_buffer* buf;
+
+ /** callback routine for results. if rcode != 0 buf has message.
+ * called as cb(cb_arg, rcode, buf, sec_state);
+ */
+ mesh_cb_func_t cb;
+ /** user arg for callback */
+ void* cb_arg;
+};
+
+/* ------------------- Functions for worker -------------------- */
+
+/**
+ * Allocate mesh, to empty.
+ * @param stack: module stack to activate, copied (as readonly reference).
+ * @param env: environment for new queries.
+ * @return mesh: the new mesh or NULL on error.
+ */
+struct mesh_area* mesh_create(struct module_stack* stack,
+ struct module_env* env);
+
+/**
+ * Delete mesh, and all query states and replies in it.
+ * @param mesh: the mesh to delete.
+ */
+void mesh_delete(struct mesh_area* mesh);
+
+/**
+ * New query incoming from clients. Create new query state if needed, and
+ * add mesh_reply to it. Returns error to client on malloc failures.
+ * Will run the mesh area queries to process if a new query state is created.
+ *
+ * @param mesh: the mesh.
+ * @param qinfo: query from client.
+ * @param qflags: flags from client query.
+ * @param edns: edns data from client query.
+ * @param rep: where to reply to.
+ * @param qid: query id to reply with.
+ */
+void mesh_new_client(struct mesh_area* mesh, struct query_info* qinfo,
+ uint16_t qflags, struct edns_data* edns, struct comm_reply* rep,
+ uint16_t qid);
+
+/**
+ * New query with callback. Create new query state if needed, and
+ * add mesh_cb to it.
+ * Will run the mesh area queries to process if a new query state is created.
+ *
+ * @param mesh: the mesh.
+ * @param qinfo: query from client.
+ * @param qflags: flags from client query.
+ * @param edns: edns data from client query.
+ * @param buf: buffer for reply contents.
+ * @param qid: query id to reply with.
+ * @param cb: callback function.
+ * @param cb_arg: callback user arg.
+ * @return 0 on error.
+ */
+int mesh_new_callback(struct mesh_area* mesh, struct query_info* qinfo,
+ uint16_t qflags, struct edns_data* edns, struct sldns_buffer* buf,
+ uint16_t qid, mesh_cb_func_t cb, void* cb_arg);
+
+/**
+ * New prefetch message. Create new query state if needed.
+ * Will run the mesh area queries to process if a new query state is created.
+ *
+ * @param mesh: the mesh.
+ * @param qinfo: query from client.
+ * @param qflags: flags from client query.
+ * @param leeway: TTL leeway what to expire earlier for this update.
+ */
+void mesh_new_prefetch(struct mesh_area* mesh, struct query_info* qinfo,
+ uint16_t qflags, time_t leeway);
+
+/**
+ * Handle new event from the wire. A serviced query has returned.
+ * The query state will be made runnable, and the mesh_area will process
+ * query states until processing is complete.
+ *
+ * @param mesh: the query mesh.
+ * @param e: outbound entry, with query state to run and reply pointer.
+ * @param reply: the comm point reply info.
+ * @param what: NETEVENT_* error code (if not 0, what is wrong, TIMEOUT).
+ */
+void mesh_report_reply(struct mesh_area* mesh, struct outbound_entry* e,
+ struct comm_reply* reply, int what);
+
+/* ------------------- Functions for module environment --------------- */
+
+/**
+ * Detach-subqueries.
+ * Remove all sub-query references from this query state.
+ * Keeps super-references of those sub-queries correct.
+ * Updates stat items in mesh_area structure.
+ * @param qstate: used to find mesh state.
+ */
+void mesh_detach_subs(struct module_qstate* qstate);
+
+/**
+ * Attach subquery.
+ * Creates it if it does not exist already.
+ * Keeps sub and super references correct.
+ * Performs a cycle detection - for double check - and fails if there is one.
+ * Also fails if the sub-sub-references become too large.
+ * Updates stat items in mesh_area structure.
+ * Pass if it is priming query or not.
+ * return:
+ * o if error (malloc) happened.
+ * o need to initialise the new state (module init; it is a new state).
+ * so that the next run of the query with this module is successful.
+ * o no init needed, attachment successful.
+ *
+ * @param qstate: the state to find mesh state, and that wants to receive
+ * the results from the new subquery.
+ * @param qinfo: what to query for (copied).
+ * @param qflags: what flags to use (RD / CD flag or not).
+ * @param prime: if it is a (stub) priming query.
+ * @param newq: If the new subquery needs initialisation, it is returned,
+ * otherwise NULL is returned.
+ * @return: false on error, true if success (and init may be needed).
+ */
+int mesh_attach_sub(struct module_qstate* qstate, struct query_info* qinfo,
+ uint16_t qflags, int prime, struct module_qstate** newq);
+
+/**
+ * Query state is done, send messages to reply entries.
+ * Encode messages using reply entry values and the querystate (with original
+ * qinfo), using given reply_info.
+ * Pass errcode != 0 if an error reply is needed.
+ * If no reply entries, nothing is done.
+ * Must be called before a module can module_finished or return module_error.
+ * The module must handle the super query states itself as well.
+ *
+ * @param mstate: mesh state that is done. return_rcode and return_msg
+ * are used for replies.
+ * return_rcode: if not 0 (NOERROR) an error is sent back (and
+ * return_msg is ignored).
+ * return_msg: reply to encode and send back to clients.
+ */
+void mesh_query_done(struct mesh_state* mstate);
+
+/**
+ * Call inform_super for the super query states that are interested in the
+ * results from this query state. These can then be changed for error
+ * or results.
+ * Called when a module is module_finished or returns module_error.
+ * The super query states become runnable with event module_event_pass,
+ * it calls the current module for the super with the inform_super event.
+ *
+ * @param mesh: mesh area to add newly runnable modules to.
+ * @param mstate: the state that has results, used to find mesh state.
+ */
+void mesh_walk_supers(struct mesh_area* mesh, struct mesh_state* mstate);
+
+/**
+ * Delete mesh state, cleanup and also rbtrees and so on.
+ * Will detach from all super/subnodes.
+ * @param qstate: to remove.
+ */
+void mesh_state_delete(struct module_qstate* qstate);
+
+/* ------------------- Functions for mesh -------------------- */
+
+/**
+ * Create and initialize a new mesh state and its query state
+ * Does not put the mesh state into rbtrees and so on.
+ * @param env: module environment to set.
+ * @param qinfo: query info that the mesh is for.
+ * @param qflags: flags for query (RD / CD flag).
+ * @param prime: if true, it is a priming query, set is_priming on mesh state.
+ * @return: new mesh state or NULL on allocation error.
+ */
+struct mesh_state* mesh_state_create(struct module_env* env,
+ struct query_info* qinfo, uint16_t qflags, int prime);
+
+/**
+ * Cleanup a mesh state and its query state. Does not do rbtree or
+ * reference cleanup.
+ * @param mstate: mesh state to cleanup. Its pointer may no longer be used
+ * afterwards. Cleanup rbtrees before calling this function.
+ */
+void mesh_state_cleanup(struct mesh_state* mstate);
+
+/**
+ * Delete all mesh states from the mesh.
+ * @param mesh: the mesh area to clear
+ */
+void mesh_delete_all(struct mesh_area* mesh);
+
+/**
+ * Find a mesh state in the mesh area. Pass relevant flags.
+ *
+ * @param mesh: the mesh area to look in.
+ * @param qinfo: what query
+ * @param qflags: if RD / CD bit is set or not.
+ * @param prime: if it is a priming query.
+ * @return: mesh state or NULL if not found.
+ */
+struct mesh_state* mesh_area_find(struct mesh_area* mesh,
+ struct query_info* qinfo, uint16_t qflags, int prime);
+
+/**
+ * Setup attachment super/sub relation between super and sub mesh state.
+ * The relation must not be present when calling the function.
+ * Does not update stat items in mesh_area.
+ * @param super: super state.
+ * @param sub: sub state.
+ * @return: 0 on alloc error.
+ */
+int mesh_state_attachment(struct mesh_state* super, struct mesh_state* sub);
+
+/**
+ * Create new reply structure and attach it to a mesh state.
+ * Does not update stat items in mesh area.
+ * @param s: the mesh state.
+ * @param edns: edns data for reply (bufsize).
+ * @param rep: comm point reply info.
+ * @param qid: ID of reply.
+ * @param qflags: original query flags.
+ * @param qname: original query name.
+ * @return: 0 on alloc error.
+ */
+int mesh_state_add_reply(struct mesh_state* s, struct edns_data* edns,
+ struct comm_reply* rep, uint16_t qid, uint16_t qflags, uint8_t* qname);
+
+/**
+ * Create new callback structure and attach it to a mesh state.
+ * Does not update stat items in mesh area.
+ * @param s: the mesh state.
+ * @param edns: edns data for reply (bufsize).
+ * @param buf: buffer for reply
+ * @param cb: callback to call with results.
+ * @param cb_arg: callback user arg.
+ * @param qid: ID of reply.
+ * @param qflags: original query flags.
+ * @return: 0 on alloc error.
+ */
+int mesh_state_add_cb(struct mesh_state* s, struct edns_data* edns,
+ struct sldns_buffer* buf, mesh_cb_func_t cb, void* cb_arg, uint16_t qid,
+ uint16_t qflags);
+
+/**
+ * Run the mesh. Run all runnable mesh states. Which can create new
+ * runnable mesh states. Until completion. Automatically called by
+ * mesh_report_reply and mesh_new_client as needed.
+ * @param mesh: mesh area.
+ * @param mstate: first mesh state to run.
+ * @param ev: event the mstate. Others get event_pass.
+ * @param e: if a reply, its outbound entry.
+ */
+void mesh_run(struct mesh_area* mesh, struct mesh_state* mstate,
+ enum module_ev ev, struct outbound_entry* e);
+
+/**
+ * Print some stats about the mesh to the log.
+ * @param mesh: the mesh to print it for.
+ * @param str: descriptive string to go with it.
+ */
+void mesh_stats(struct mesh_area* mesh, const char* str);
+
+/**
+ * Clear the stats that the mesh keeps (number of queries serviced)
+ * @param mesh: the mesh
+ */
+void mesh_stats_clear(struct mesh_area* mesh);
+
+/**
+ * Print all the states in the mesh to the log.
+ * @param mesh: the mesh to print all states of.
+ */
+void mesh_log_list(struct mesh_area* mesh);
+
+/**
+ * Calculate memory size in use by mesh and all queries inside it.
+ * @param mesh: the mesh to examine.
+ * @return size in bytes.
+ */
+size_t mesh_get_mem(struct mesh_area* mesh);
+
+/**
+ * Find cycle; see if the given mesh is in the targets sub, or sub-sub, ...
+ * trees.
+ * If the sub-sub structure is too large, it returns 'a cycle'=2.
+ * @param qstate: given mesh querystate.
+ * @param qinfo: query info for dependency.
+ * @param flags: query flags of dependency.
+ * @param prime: if dependency is a priming query or not.
+ * @return true if the name,type,class exists and the given qstate mesh exists
+ * as a dependency of that name. Thus if qstate becomes dependent on
+ * name,type,class then a cycle is created, this is return value 1.
+ * Too large to search is value 2 (also true).
+ */
+int mesh_detect_cycle(struct module_qstate* qstate, struct query_info* qinfo,
+ uint16_t flags, int prime);
+
+/** compare two mesh_states */
+int mesh_state_compare(const void* ap, const void* bp);
+
+/** compare two mesh references */
+int mesh_state_ref_compare(const void* ap, const void* bp);
+
+/**
+ * Make space for another recursion state for a reply in the mesh
+ * @param mesh: mesh area
+ * @param qbuf: query buffer to save if recursion is invoked to make space.
+ * This buffer is necessary, because the following sequence in calls
+ * can result in an overwrite of the incoming query:
+ * delete_other_mesh_query - iter_clean - serviced_delete - waiting
+ * udp query is sent - on error callback - callback sends SERVFAIL reply
+ * over the same network channel, and shared UDP buffer is overwritten.
+ * You can pass NULL if there is no buffer that must be backed up.
+ * @return false if no space is available.
+ */
+int mesh_make_new_space(struct mesh_area* mesh, struct sldns_buffer* qbuf);
+
+/**
+ * Insert mesh state into a double linked list. Inserted at end.
+ * @param m: mesh state.
+ * @param fp: pointer to the first-elem-pointer of the list.
+ * @param lp: pointer to the last-elem-pointer of the list.
+ */
+void mesh_list_insert(struct mesh_state* m, struct mesh_state** fp,
+ struct mesh_state** lp);
+
+/**
+ * Remove mesh state from a double linked list. Remove from any position.
+ * @param m: mesh state.
+ * @param fp: pointer to the first-elem-pointer of the list.
+ * @param lp: pointer to the last-elem-pointer of the list.
+ */
+void mesh_list_remove(struct mesh_state* m, struct mesh_state** fp,
+ struct mesh_state** lp);
+
+#endif /* SERVICES_MESH_H */