aboutsummaryrefslogtreecommitdiff
path: root/contrib/epee
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/epee')
-rw-r--r--contrib/epee/include/rolling_median.h236
1 files changed, 236 insertions, 0 deletions
diff --git a/contrib/epee/include/rolling_median.h b/contrib/epee/include/rolling_median.h
new file mode 100644
index 000000000..8b5a82a84
--- /dev/null
+++ b/contrib/epee/include/rolling_median.h
@@ -0,0 +1,236 @@
+// Copyright (c) 2019, The Monero Project
+//
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without modification, are
+// permitted provided that the following conditions are met:
+//
+// 1. Redistributions of source code must retain the above copyright notice, this list of
+// conditions and the following disclaimer.
+//
+// 2. Redistributions in binary form must reproduce the above copyright notice, this list
+// of conditions and the following disclaimer in the documentation and/or other
+// materials provided with the distribution.
+//
+// 3. Neither the name of the copyright holder nor the names of its contributors may be
+// used to endorse or promote products derived from this software without specific
+// prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
+// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
+// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
+// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Adapted from source by AShelly:
+// Copyright (c) 2011 ashelly.myopenid.com, licenced under the MIT licence
+// https://stackoverflow.com/questions/5527437/rolling-median-in-c-turlach-implementation
+// https://stackoverflow.com/questions/1309263/rolling-median-algorithm-in-c
+// https://ideone.com/XPbl6
+
+#pragma once
+
+#include <stdlib.h>
+#include <stdint.h>
+
+namespace epee
+{
+namespace misc_utils
+{
+
+template<typename Item>
+struct rolling_median_t
+{
+private:
+ Item* data; //circular queue of values
+ int* pos; //index into `heap` for each value
+ int* heap; //max/median/min heap holding indexes into `data`.
+ int N; //allocated size.
+ int idx; //position in circular queue
+ int minCt; //count of items in min heap
+ int maxCt; //count of items in max heap
+ int sz; //count of items in heap
+
+private:
+
+ //returns true if heap[i] < heap[j]
+ bool mmless(int i, int j) const
+ {
+ return data[heap[i]] < data[heap[j]];
+ }
+
+ //swaps items i&j in heap, maintains indexes
+ bool mmexchange(int i, int j)
+ {
+ const int t = heap[i];
+ heap[i] = heap[j];
+ heap[j] = t;
+ pos[heap[i]] = i;
+ pos[heap[j]] = j;
+ return 1;
+ }
+
+ //swaps items i&j if i<j; returns true if swapped
+ bool mmCmpExch(int i, int j)
+ {
+ return mmless(i, j) && mmexchange(i, j);
+ }
+
+ //maintains minheap property for all items below i.
+ void minSortDown(int i)
+ {
+ for (i *= 2; i <= minCt; i *= 2)
+ {
+ if (i < minCt && mmless(i + 1, i))
+ ++i;
+ if (!mmCmpExch(i, i / 2))
+ break;
+ }
+ }
+
+ //maintains maxheap property for all items below i. (negative indexes)
+ void maxSortDown(int i)
+ {
+ for (i *= 2; i >= -maxCt; i *= 2)
+ {
+ if (i > -maxCt && mmless(i, i - 1))
+ --i;
+ if (!mmCmpExch(i / 2, i))
+ break;
+ }
+ }
+
+ //maintains minheap property for all items above i, including median
+ //returns true if median changed
+ bool minSortUp(int i)
+ {
+ while (i > 0 && mmCmpExch(i, i / 2))
+ i /= 2;
+ return i == 0;
+ }
+
+ //maintains maxheap property for all items above i, including median
+ //returns true if median changed
+ bool maxSortUp(int i)
+ {
+ while (i < 0 && mmCmpExch(i / 2, i))
+ i /= 2;
+ return i == 0;
+ }
+
+protected:
+ rolling_median_t &operator=(const rolling_median_t&) = delete;
+ rolling_median_t(const rolling_median_t&) = delete;
+
+public:
+ //creates new rolling_median_t: to calculate `nItems` running median.
+ rolling_median_t(size_t N): N(N)
+ {
+ int size = N * (sizeof(Item) + sizeof(int) * 2);
+ data = (Item*)malloc(size);
+ pos = (int*) (data + N);
+ heap = pos + N + (N / 2); //points to middle of storage.
+ clear();
+ }
+
+ rolling_median_t(rolling_median_t &&m)
+ {
+ free(data);
+ memcpy(this, &m, sizeof(rolling_median_t));
+ m.data = NULL;
+ }
+ rolling_median_t &operator=(rolling_median_t &&m)
+ {
+ free(data);
+ memcpy(this, &m, sizeof(rolling_median_t));
+ m.data = NULL;
+ return *this;
+ }
+
+ ~rolling_median_t()
+ {
+ free(data);
+ }
+
+ void clear()
+ {
+ idx = 0;
+ minCt = 0;
+ maxCt = 0;
+ sz = 0;
+ int nItems = N;
+ while (nItems--) //set up initial heap fill pattern: median,max,min,max,...
+ {
+ pos[nItems] = ((nItems + 1) / 2) * ((nItems & 1) ? -1 : 1);
+ heap[pos[nItems]] = nItems;
+ }
+ }
+
+ int size() const
+ {
+ return sz;
+ }
+
+ //Inserts item, maintains median in O(lg nItems)
+ void insert(Item v)
+ {
+ int p = pos[idx];
+ Item old = data[idx];
+ data[idx] = v;
+ idx = (idx + 1) % N;
+ sz = std::min<int>(sz + 1, N);
+ if (p > 0) //new item is in minHeap
+ {
+ if (minCt < (N - 1) / 2)
+ {
+ ++minCt;
+ }
+ else if (v > old)
+ {
+ minSortDown(p);
+ return;
+ }
+ if (minSortUp(p) && mmCmpExch(0, -1))
+ maxSortDown(-1);
+ }
+ else if (p < 0) //new item is in maxheap
+ {
+ if (maxCt < N / 2)
+ {
+ ++maxCt;
+ }
+ else if (v < old)
+ {
+ maxSortDown(p);
+ return;
+ }
+ if (maxSortUp(p) && minCt && mmCmpExch(1, 0))
+ minSortDown(1);
+ }
+ else //new item is at median
+ {
+ if (maxCt && maxSortUp(-1))
+ maxSortDown(-1);
+ if (minCt && minSortUp(1))
+ minSortDown(1);
+ }
+ }
+
+ //returns median item (or average of 2 when item count is even)
+ Item median() const
+ {
+ Item v = data[heap[0]];
+ if (minCt < maxCt)
+ {
+ v = (v + data[heap[-1]]) / 2;
+ }
+ return v;
+ }
+};
+
+}
+}