aboutsummaryrefslogtreecommitdiff
path: root/tests
diff options
context:
space:
mode:
authormoneromooo-monero <moneromooo-monero@users.noreply.github.com>2019-04-02 14:16:45 +0000
committermoneromooo-monero <moneromooo-monero@users.noreply.github.com>2019-04-18 15:14:38 +0000
commit35e0a968bde4644a86f6f455b1a50ca25398fa15 (patch)
treebede71958240b9f83161ff7d3b54512ac2d81d27 /tests
parentMerge pull request #5415 (diff)
downloadmonero-35e0a968bde4644a86f6f455b1a50ca25398fa15.tar.xz
wallet2: "output lineup" fake out selection
Based on python code by sarang: https://github.com/SarangNoether/skunkworks/blob/outputs/outputs/simulate.py
Diffstat (limited to 'tests')
-rw-r--r--tests/unit_tests/output_selection.cpp117
1 files changed, 117 insertions, 0 deletions
diff --git a/tests/unit_tests/output_selection.cpp b/tests/unit_tests/output_selection.cpp
index a528679e4..0094fc765 100644
--- a/tests/unit_tests/output_selection.cpp
+++ b/tests/unit_tests/output_selection.cpp
@@ -101,3 +101,120 @@ TEST(select_outputs, order)
PICK(1); // then the one that's on the same height
}
+#define MKOFFSETS(N, n) \
+ offsets.resize(N); \
+ size_t n_outs = 0; \
+ for (auto &offset: offsets) \
+ { \
+ offset = n_outs += (n); \
+ }
+
+TEST(select_outputs, gamma)
+{
+ std::vector<uint64_t> offsets;
+
+ MKOFFSETS(300000, 1);
+ tools::gamma_picker picker(offsets);
+ std::vector<double> ages(100000);
+ double age_scale = 120. * (offsets.size() / (double)n_outs);
+ for (size_t i = 0; i < ages.size(); )
+ {
+ uint64_t o = picker.pick();
+ if (o >= n_outs)
+ continue;
+ ages[i] = (n_outs - 1 - o) * age_scale;
+ ASSERT_GE(ages[i], 0);
+ ASSERT_LE(ages[i], offsets.size() * 120);
+ ++i;
+ }
+ double median = epee::misc_utils::median(ages);
+ MDEBUG("median age: " << median / 86400. << " days");
+ ASSERT_GE(median, 1.3 * 86400);
+ ASSERT_LE(median, 1.4 * 86400);
+}
+
+TEST(select_outputs, density)
+{
+ static const size_t NPICKS = 1000000;
+ std::vector<uint64_t> offsets;
+
+ MKOFFSETS(300000, 1 + (rand() & 0x1f));
+ tools::gamma_picker picker(offsets);
+
+ std::vector<int> picks(/*n_outs*/offsets.size(), 0);
+ for (int i = 0; i < NPICKS; )
+ {
+ uint64_t o = picker.pick();
+ if (o >= n_outs)
+ continue;
+ auto it = std::lower_bound(offsets.begin(), offsets.end(), o);
+ auto idx = std::distance(offsets.begin(), it);
+ ASSERT_LT(idx, picks.size());
+ ++picks[idx];
+ ++i;
+ }
+
+ for (int d = 1; d < 0x20; ++d)
+ {
+ // count the number of times an output in a block of d outputs was selected
+ // count how many outputs are in a block of d outputs
+ size_t count_selected = 0, count_chain = 0;
+ for (size_t i = 0; i < offsets.size(); ++i)
+ {
+ size_t n_outputs = offsets[i] - (i == 0 ? 0 : offsets[i - 1]);
+ if (n_outputs == d)
+ {
+ count_selected += picks[i];
+ count_chain += d;
+ }
+ }
+ float selected_ratio = count_selected / (float)NPICKS;
+ float chain_ratio = count_chain / (float)n_outs;
+ MDEBUG(count_selected << "/" << NPICKS << " outputs selected in blocks of density " << d << ", " << 100.0f * selected_ratio << "%");
+ MDEBUG(count_chain << "/" << offsets.size() << " outputs in blocks of density " << d << ", " << 100.0f * chain_ratio << "%");
+ ASSERT_LT(fabsf(selected_ratio - chain_ratio), 0.02f);
+ }
+}
+
+TEST(select_outputs, same_distribution)
+{
+ static const size_t NPICKS = 1000000;
+ std::vector<uint64_t> offsets;
+
+ MKOFFSETS(300000, 1 + (rand() & 0x1f));
+ tools::gamma_picker picker(offsets);
+
+ std::vector<int> chain_picks(offsets.size(), 0);
+ std::vector<int> output_picks(n_outs, 0);
+ for (int i = 0; i < NPICKS; )
+ {
+ uint64_t o = picker.pick();
+ if (o >= n_outs)
+ continue;
+ auto it = std::lower_bound(offsets.begin(), offsets.end(), o);
+ auto idx = std::distance(offsets.begin(), it);
+ ASSERT_LT(idx, chain_picks.size());
+ ++chain_picks[idx];
+ ++output_picks[o];
+ ++i;
+ }
+
+ // scale them both to 0-100
+ std::vector<int> chain_norm(100, 0), output_norm(100, 0);
+ for (size_t i = 0; i < output_picks.size(); ++i)
+ output_norm[i * 100 / output_picks.size()] += output_picks[i];
+ for (size_t i = 0; i < chain_picks.size(); ++i)
+ chain_norm[i * 100 / chain_picks.size()] += chain_picks[i];
+
+ double max_dev = 0.0, avg_dev = 0.0;
+ for (size_t i = 0; i < 100; ++i)
+ {
+ const double diff = (double)output_norm[i] - (double)chain_norm[i];
+ double dev = fabs(2.0 * diff / (output_norm[i] + chain_norm[i]));
+ ASSERT_LT(dev, 0.1);
+ avg_dev += dev;
+ }
+ avg_dev /= 100;
+ MDEBUG("avg_dev: " << avg_dev);
+ ASSERT_LT(avg_dev, 0.015);
+}