diff options
author | moneromooo-monero <moneromooo-monero@users.noreply.github.com> | 2019-04-02 14:16:45 +0000 |
---|---|---|
committer | moneromooo-monero <moneromooo-monero@users.noreply.github.com> | 2019-04-18 15:14:38 +0000 |
commit | 35e0a968bde4644a86f6f455b1a50ca25398fa15 (patch) | |
tree | bede71958240b9f83161ff7d3b54512ac2d81d27 /tests/unit_tests | |
parent | Merge pull request #5415 (diff) | |
download | monero-35e0a968bde4644a86f6f455b1a50ca25398fa15.tar.xz |
wallet2: "output lineup" fake out selection
Based on python code by sarang:
https://github.com/SarangNoether/skunkworks/blob/outputs/outputs/simulate.py
Diffstat (limited to 'tests/unit_tests')
-rw-r--r-- | tests/unit_tests/output_selection.cpp | 117 |
1 files changed, 117 insertions, 0 deletions
diff --git a/tests/unit_tests/output_selection.cpp b/tests/unit_tests/output_selection.cpp index a528679e4..0094fc765 100644 --- a/tests/unit_tests/output_selection.cpp +++ b/tests/unit_tests/output_selection.cpp @@ -101,3 +101,120 @@ TEST(select_outputs, order) PICK(1); // then the one that's on the same height } +#define MKOFFSETS(N, n) \ + offsets.resize(N); \ + size_t n_outs = 0; \ + for (auto &offset: offsets) \ + { \ + offset = n_outs += (n); \ + } + +TEST(select_outputs, gamma) +{ + std::vector<uint64_t> offsets; + + MKOFFSETS(300000, 1); + tools::gamma_picker picker(offsets); + std::vector<double> ages(100000); + double age_scale = 120. * (offsets.size() / (double)n_outs); + for (size_t i = 0; i < ages.size(); ) + { + uint64_t o = picker.pick(); + if (o >= n_outs) + continue; + ages[i] = (n_outs - 1 - o) * age_scale; + ASSERT_GE(ages[i], 0); + ASSERT_LE(ages[i], offsets.size() * 120); + ++i; + } + double median = epee::misc_utils::median(ages); + MDEBUG("median age: " << median / 86400. << " days"); + ASSERT_GE(median, 1.3 * 86400); + ASSERT_LE(median, 1.4 * 86400); +} + +TEST(select_outputs, density) +{ + static const size_t NPICKS = 1000000; + std::vector<uint64_t> offsets; + + MKOFFSETS(300000, 1 + (rand() & 0x1f)); + tools::gamma_picker picker(offsets); + + std::vector<int> picks(/*n_outs*/offsets.size(), 0); + for (int i = 0; i < NPICKS; ) + { + uint64_t o = picker.pick(); + if (o >= n_outs) + continue; + auto it = std::lower_bound(offsets.begin(), offsets.end(), o); + auto idx = std::distance(offsets.begin(), it); + ASSERT_LT(idx, picks.size()); + ++picks[idx]; + ++i; + } + + for (int d = 1; d < 0x20; ++d) + { + // count the number of times an output in a block of d outputs was selected + // count how many outputs are in a block of d outputs + size_t count_selected = 0, count_chain = 0; + for (size_t i = 0; i < offsets.size(); ++i) + { + size_t n_outputs = offsets[i] - (i == 0 ? 0 : offsets[i - 1]); + if (n_outputs == d) + { + count_selected += picks[i]; + count_chain += d; + } + } + float selected_ratio = count_selected / (float)NPICKS; + float chain_ratio = count_chain / (float)n_outs; + MDEBUG(count_selected << "/" << NPICKS << " outputs selected in blocks of density " << d << ", " << 100.0f * selected_ratio << "%"); + MDEBUG(count_chain << "/" << offsets.size() << " outputs in blocks of density " << d << ", " << 100.0f * chain_ratio << "%"); + ASSERT_LT(fabsf(selected_ratio - chain_ratio), 0.02f); + } +} + +TEST(select_outputs, same_distribution) +{ + static const size_t NPICKS = 1000000; + std::vector<uint64_t> offsets; + + MKOFFSETS(300000, 1 + (rand() & 0x1f)); + tools::gamma_picker picker(offsets); + + std::vector<int> chain_picks(offsets.size(), 0); + std::vector<int> output_picks(n_outs, 0); + for (int i = 0; i < NPICKS; ) + { + uint64_t o = picker.pick(); + if (o >= n_outs) + continue; + auto it = std::lower_bound(offsets.begin(), offsets.end(), o); + auto idx = std::distance(offsets.begin(), it); + ASSERT_LT(idx, chain_picks.size()); + ++chain_picks[idx]; + ++output_picks[o]; + ++i; + } + + // scale them both to 0-100 + std::vector<int> chain_norm(100, 0), output_norm(100, 0); + for (size_t i = 0; i < output_picks.size(); ++i) + output_norm[i * 100 / output_picks.size()] += output_picks[i]; + for (size_t i = 0; i < chain_picks.size(); ++i) + chain_norm[i * 100 / chain_picks.size()] += chain_picks[i]; + + double max_dev = 0.0, avg_dev = 0.0; + for (size_t i = 0; i < 100; ++i) + { + const double diff = (double)output_norm[i] - (double)chain_norm[i]; + double dev = fabs(2.0 * diff / (output_norm[i] + chain_norm[i])); + ASSERT_LT(dev, 0.1); + avg_dev += dev; + } + avg_dev /= 100; + MDEBUG("avg_dev: " << avg_dev); + ASSERT_LT(avg_dev, 0.015); +} |