diff options
author | Riccardo Spagni <ric@spagni.net> | 2014-10-06 10:30:39 +0200 |
---|---|---|
committer | Riccardo Spagni <ric@spagni.net> | 2014-10-06 10:30:48 +0200 |
commit | 2c739371acee014f7716503e588b3bccb4decd77 (patch) | |
tree | 999177b9621dd526ad2d04b5467cef27f08bf4f9 /src | |
parent | Merge pull request #167 (diff) | |
parent | another typo fix (diff) | |
download | monero-2c739371acee014f7716503e588b3bccb4decd77.tar.xz |
Merge pull request #170
46f26ff another typo fix (David G. Andersen)
ac6bc48 fix typo (David G. Andersen)
d744dd1 More documentation (David G. Andersen)
4d493f6 initial doxygen commenting of the CryptoNight proof-of-work code (David G. Andersen)
Diffstat (limited to 'src')
-rw-r--r-- | src/crypto/slow-hash.c | 147 |
1 files changed, 142 insertions, 5 deletions
diff --git a/src/crypto/slow-hash.c b/src/crypto/slow-hash.c index d4f27e1e1..ec356d53b 100644 --- a/src/crypto/slow-hash.c +++ b/src/crypto/slow-hash.c @@ -103,8 +103,16 @@ j = state_index(a); \ _c = _mm_load_si128(R128(&hp_state[j])); \ _a = _mm_load_si128(R128(a)); \ - -// dga's optimized scratchpad twiddling + +/* + * An SSE-optimized implementation of the second half of CryptoNote step 3. + * After using AES to mix a scratchpad value into _c (done by the caller), + * this macro xors it with _b and stores the result back to the same index (j) that it + * loaded the scratchpad value from. It then performs a second random memory + * read/write from the scratchpad, but this time mixes the values using a 64 + * bit multiply. + * This code is based upon an optimized implementation by dga. + */ #define post_aes() \ _mm_store_si128(R128(c), _c); \ _b = _mm_xor_si128(_b, _c); \ @@ -160,12 +168,21 @@ void cpuid(int CPUInfo[4], int InfoType) } #endif +/** + * @brief a = (a xor b), where a and b point to 128 bit values + */ + STATIC INLINE void xor_blocks(uint8_t *a, const uint8_t *b) { U64(a)[0] ^= U64(b)[0]; U64(a)[1] ^= U64(b)[1]; } +/** + * @brief uses cpuid to determine if the CPU supports the AES instructions + * @return true if the CPU supports AES, false otherwise + */ + STATIC INLINE int check_aes_hw(void) { int cpuid_results[4]; @@ -205,6 +222,25 @@ STATIC INLINE void aes_256_assist2(__m128i* t1, __m128i * t3) *t3 = _mm_xor_si128(*t3, t2); } +/** + * @brief expands 'key' into a form it can be used for AES encryption. + * + * This is an SSE-optimized implementation of AES key schedule generation. It + * expands the key into multiple round keys, each of which is used in one round + * of the AES encryption used to fill (and later, extract randomness from) + * the large 2MB buffer. Note that CryptoNight does not use a completely + * standard AES encryption for its buffer expansion, so do not copy this + * function outside of Monero without caution! This version uses the hardware + * AESKEYGENASSIST instruction to speed key generation, and thus requires + * CPU AES support. + * For more information about these functions, see page 19 of Intel's AES instructions + * white paper: + * http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-instructions-set-white-paper.pdf + * + * @param key the input 128 bit key + * @param expandedKey An output buffer to hold the generated key schedule + */ + STATIC INLINE void aes_expand_key(const uint8_t *key, uint8_t *expandedKey) { __m128i *ek = R128(expandedKey); @@ -245,6 +281,24 @@ STATIC INLINE void aes_expand_key(const uint8_t *key, uint8_t *expandedKey) ek[10] = t1; } +/* + * @brief a "pseudo" round of AES (similar to but slightly different from normal AES encryption) + * + * To fill its 2MB scratch buffer, CryptoNight uses a nonstandard implementation + * of AES encryption: It applies 10 rounds of the basic AES encryption operation + * to an input 128 bit chunk of data <in>. Unlike normal AES, however, this is + * all it does; it does not perform the initial AddRoundKey step (this is done + * in subsequent steps by aesenc_si128), and it does not use the simpler final round. + * Hence, this is a "pseudo" round - though the function actually implements 10 rounds together. + * + * Note that unlike aesb_pseudo_round, this function works on multiple data chunks. + * + * @param in a pointer to nblocks * 128 bits of data to be encrypted + * @param out a pointer to an nblocks * 128 bit buffer where the output will be stored + * @param expandedKey the expanded AES key + * @param nblocks the number of 128 blocks of data to be encrypted + */ + STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, int nblocks) { @@ -269,6 +323,20 @@ STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out, } } +/* + * @brief aes_pseudo_round that loads data from *in and xors it with *xor first + * + * This function performs the same operations as aes_pseudo_round, but before + * performing the encryption of each 128 bit block from <in>, it xors + * it with the corresponding block from <xor>. + * + * @param in a pointer to nblocks * 128 bits of data to be encrypted + * @param out a pointer to an nblocks * 128 bit buffer where the output will be stored + * @param expandedKey the expanded AES key + * @param xor a pointer to an nblocks * 128 bit buffer that is xored into in before encryption (in is left unmodified) + * @param nblocks the number of 128 blocks of data to be encrypted + */ + STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, const uint8_t *xor, int nblocks) { @@ -327,6 +395,18 @@ BOOL SetLockPagesPrivilege(HANDLE hProcess, BOOL bEnable) } #endif +/** + * @brief allocate the 2MB scratch buffer using OS support for huge pages, if available + * + * This function tries to allocate the 2MB scratch buffer using a single + * 2MB "huge page" (instead of the usual 4KB page sizes) to reduce TLB misses + * during the random accesses to the scratch buffer. This is one of the + * important speed optimizations needed to make CryptoNight faster. + * + * No parameters. Updates a thread-local pointer, hp_state, to point to + * the allocated buffer. + */ + void slow_hash_allocate_state(void) { int state = 0; @@ -356,6 +436,10 @@ void slow_hash_allocate_state(void) } } +/** + *@brief frees the state allocated by slow_hash_allocate_state + */ + void slow_hash_free_state(void) { if(hp_state == NULL) @@ -376,9 +460,40 @@ void slow_hash_free_state(void) hp_allocated = 0; } +/** + * @brief the hash function implementing CryptoNight, used for the Monero proof-of-work + * + * Computes the hash of <data> (which consists of <length> bytes), returning the + * hash in <hash>. The CryptoNight hash operates by first using Keccak 1600, + * the 1600 bit variant of the Keccak hash used in SHA-3, to create a 200 byte + * buffer of pseudorandom data by hashing the supplied data. It then uses this + * random data to fill a large 2MB buffer with pseudorandom data by iteratively + * encrypting it using 10 rounds of AES per entry. After this initialization, + * it executes 500,000 rounds of mixing through the random 2MB buffer using + * AES (typically provided in hardware on modern CPUs) and a 64 bit multiply. + * Finally, it re-mixes this large buffer back into + * the 200 byte "text" buffer, and then hashes this buffer using one of four + * pseudorandomly selected hash functions (Blake, Groestl, JH, or Skein) + * to populate the output. + * + * The 2MB buffer and choice of functions for mixing are designed to make the + * algorithm "CPU-friendly" (and thus, reduce the advantage of GPU, FPGA, + * or ASIC-based implementations): the functions used are fast on modern + * CPUs, and the 2MB size matches the typical amount of L3 cache available per + * core on 2013-era CPUs. When available, this implementation will use hardware + * AES support on x86 CPUs. + * + * A diagram of the inner loop of this function can be found at + * http://www.cs.cmu.edu/~dga/crypto/xmr/cryptonight.png + * + * @param data the data to hash + * @param length the length in bytes of the data + * @param hash a pointer to a buffer in which the final 256 bit hash will be stored + */ + void cn_slow_hash(const void *data, size_t length, char *hash) { - RDATA_ALIGN16 uint8_t expandedKey[240]; + RDATA_ALIGN16 uint8_t expandedKey[240]; /* These buffers are aligned to use later with SSE functions */ uint8_t text[INIT_SIZE_BYTE]; RDATA_ALIGN16 uint64_t a[2]; @@ -402,9 +517,15 @@ void cn_slow_hash(const void *data, size_t length, char *hash) if(hp_state == NULL) slow_hash_allocate_state(); + /* CryptoNight Step 1: Use Keccak1600 to initialize the 'state' (and 'text') buffers from the data. */ + hash_process(&state.hs, data, length); memcpy(text, state.init, INIT_SIZE_BYTE); + /* CryptoNight Step 2: Iteratively encrypt the results from keccak to fill + * the 2MB large random access buffer. + */ + if(useAes) { aes_expand_key(state.hs.b, expandedKey); @@ -432,15 +553,20 @@ void cn_slow_hash(const void *data, size_t length, char *hash) U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0]; U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1]; + /* CryptoNight Step 3: Bounce randomly 1 million times through the mixing buffer, + * using 500,000 iterations of the following mixing function. Each execution + * performs two reads and writes from the mixing buffer. + */ + _b = _mm_load_si128(R128(b)); - // this is ugly but the branching affects the loop somewhat so put it outside. + // Two independent versions, one with AES, one without, to ensure that + // the useAes test is only performed once, not every iteration. if(useAes) { for(i = 0; i < ITER / 2; i++) { pre_aes(); _c = _mm_aesenc_si128(_c, _a); - // post_aes(), optimized scratchpad twiddling (credits to dga) post_aes(); } } @@ -454,6 +580,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash) } } + /* CryptoNight Step 4: Sequentially pass through the mixing buffer and use 10 rounds + * of AES encryption to mix the random data back into the 'text' buffer. 'text' + * was originally created with the output of Keccak1600. */ + memcpy(text, state.init, INIT_SIZE_BYTE); if(useAes) { @@ -478,6 +608,13 @@ void cn_slow_hash(const void *data, size_t length, char *hash) oaes_free((OAES_CTX **) &aes_ctx); } + /* CryptoNight Step 5: Apply Keccak to the state again, and then + * use the resulting data to select which of four finalizer + * hash functions to apply to the data (Blake, Groestl, JH, or Skein). + * Use this hash to squeeze the state array down + * to the final 256 bit hash output. + */ + memcpy(state.init, text, INIT_SIZE_BYTE); hash_permutation(&state.hs); extra_hashes[state.hs.b[0] & 3](&state, 200, hash); |