aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorRiccardo Spagni <ric@spagni.net>2016-09-16 08:42:59 +0200
committerRiccardo Spagni <ric@spagni.net>2016-09-16 08:42:59 +0200
commite06530e2d97a0a44f1f954b0d9a49e522e2ca74a (patch)
tree97b502b79a3a5e72ff1ff4f217467bc748bcff4f /src
parentMerge pull request #1076 (diff)
parentAdd ARMv8-A AES support (diff)
downloadmonero-e06530e2d97a0a44f1f954b0d9a49e522e2ca74a.tar.xz
Merge pull request #1077
69b5918 Add ARMv8-A AES support (Howard Chu)
Diffstat (limited to '')
-rw-r--r--src/crypto/slow-hash.c337
1 files changed, 295 insertions, 42 deletions
diff --git a/src/crypto/slow-hash.c b/src/crypto/slow-hash.c
index a0d2d1302..90fda3470 100644
--- a/src/crypto/slow-hash.c
+++ b/src/crypto/slow-hash.c
@@ -37,6 +37,13 @@
#include "hash-ops.h"
#include "oaes_lib.h"
+#define MEMORY (1 << 21) // 2MB scratchpad
+#define ITER (1 << 20)
+#define AES_BLOCK_SIZE 16
+#define AES_KEY_SIZE 32
+#define INIT_SIZE_BLK 8
+#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
+
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64))
// Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI
// Fall back to more portable code is down at the bottom
@@ -77,12 +84,6 @@
#define ASM __asm
#endif
-#define MEMORY (1 << 21) // 2MB scratchpad
-#define ITER (1 << 20)
-#define AES_BLOCK_SIZE 16
-#define AES_KEY_SIZE 32
-#define INIT_SIZE_BLK 8
-#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)
#define U64(x) ((uint64_t *) (x))
@@ -643,9 +644,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash)
extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
}
-#elif defined(__arm__)
-// ND: Some minor optimizations for ARM7 (raspberrry pi 2), effect seems to be ~40-50% faster.
-// Needs more work.
+#elif defined(__arm__) || defined(__aarch64__)
void slow_hash_allocate_state(void)
{
// Do nothing, this is just to maintain compatibility with the upgraded slow-hash.c
@@ -658,13 +657,6 @@ void slow_hash_free_state(void)
return;
}
-#define MEMORY (1 << 21) /* 2 MiB */
-#define ITER (1 << 20)
-#define AES_BLOCK_SIZE 16
-#define AES_KEY_SIZE 32 /*16*/
-#define INIT_SIZE_BLK 8
-#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
-
#if defined(__GNUC__)
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
#define STATIC static
@@ -677,6 +669,276 @@ void slow_hash_free_state(void)
#define U64(x) ((uint64_t *) (x))
+#pragma pack(push, 1)
+union cn_slow_hash_state
+{
+ union hash_state hs;
+ struct
+ {
+ uint8_t k[64];
+ uint8_t init[INIT_SIZE_BYTE];
+ };
+};
+#pragma pack(pop)
+
+#if defined(__aarch64__) && defined(__ARM_FEATURE_CRYPTO)
+
+/* ARMv8-A optimized with NEON and AES instructions.
+ * Copied from the x86-64 AES-NI implementation. It has much the same
+ * characteristics as x86-64: there's no 64x64=128 multiplier for vectors,
+ * and moving between vector and regular registers stalls the pipeline.
+ */
+#include <arm_neon.h>
+
+#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)
+
+#define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4)
+#define __mul() __asm__("mul %0, %1, %2\n\t" : "=r"(lo) : "r"(c[0]), "r"(b[0]) ); \
+ __asm__("umulh %0, %1, %2\n\t" : "=r"(hi) : "r"(c[0]), "r"(b[0]) );
+
+#define pre_aes() \
+ j = state_index(a); \
+ _c = vld1q_u8(&hp_state[j]); \
+ _a = vld1q_u8((const uint8_t *)a); \
+
+#define post_aes() \
+ vst1q_u8((uint8_t *)c, _c); \
+ _b = veorq_u8(_b, _c); \
+ vst1q_u8(&hp_state[j], _b); \
+ j = state_index(c); \
+ p = U64(&hp_state[j]); \
+ b[0] = p[0]; b[1] = p[1]; \
+ __mul(); \
+ a[0] += hi; a[1] += lo; \
+ p = U64(&hp_state[j]); \
+ p[0] = a[0]; p[1] = a[1]; \
+ a[0] ^= b[0]; a[1] ^= b[1]; \
+ _b = _c; \
+
+
+/* Note: this was based on a standard 256bit key schedule but
+ * it's been shortened since Cryptonight doesn't use the full
+ * key schedule. Don't try to use this for vanilla AES.
+*/
+static void aes_expand_key(const uint8_t *key, uint8_t *expandedKey) {
+__asm__("mov x2, %1\n\t" : : "r"(key), "r"(expandedKey));
+__asm__(
+" adr x3,Lrcon\n"
+"\n"
+" eor v0.16b,v0.16b,v0.16b\n"
+" ld1 {v3.16b},[x0],#16\n"
+" ld1 {v1.4s,v2.4s},[x3],#32\n"
+" b L256\n"
+".align 5\n"
+"Lrcon:\n"
+".long 0x01,0x01,0x01,0x01\n"
+".long 0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d // rotate-n-splat\n"
+".long 0x1b,0x1b,0x1b,0x1b\n"
+"\n"
+".align 4\n"
+"L256:\n"
+" ld1 {v4.16b},[x0]\n"
+" mov w1,#5\n"
+" st1 {v3.4s},[x2],#16\n"
+"\n"
+"Loop256:\n"
+" tbl v6.16b,{v4.16b},v2.16b\n"
+" ext v5.16b,v0.16b,v3.16b,#12\n"
+" st1 {v4.4s},[x2],#16\n"
+" aese v6.16b,v0.16b\n"
+" subs w1,w1,#1\n"
+"\n"
+" eor v3.16b,v3.16b,v5.16b\n"
+" ext v5.16b,v0.16b,v5.16b,#12\n"
+" eor v3.16b,v3.16b,v5.16b\n"
+" ext v5.16b,v0.16b,v5.16b,#12\n"
+" eor v6.16b,v6.16b,v1.16b\n"
+" eor v3.16b,v3.16b,v5.16b\n"
+" shl v1.16b,v1.16b,#1\n"
+" eor v3.16b,v3.16b,v6.16b\n"
+" st1 {v3.4s},[x2],#16\n"
+" b.eq Ldone\n"
+"\n"
+" dup v6.4s,v3.s[3] // just splat\n"
+" ext v5.16b,v0.16b,v4.16b,#12\n"
+" aese v6.16b,v0.16b\n"
+"\n"
+" eor v4.16b,v4.16b,v5.16b\n"
+" ext v5.16b,v0.16b,v5.16b,#12\n"
+" eor v4.16b,v4.16b,v5.16b\n"
+" ext v5.16b,v0.16b,v5.16b,#12\n"
+" eor v4.16b,v4.16b,v5.16b\n"
+"\n"
+" eor v4.16b,v4.16b,v6.16b\n"
+" b Loop256\n"
+"\n"
+"Ldone:\n");
+}
+
+/* An ordinary AES round is a sequence of SubBytes, ShiftRows, MixColumns, AddRoundKey. There
+ * is also an InitialRound which consists solely of AddRoundKey. The ARM instructions slice
+ * this sequence differently; the aese instruction performs AddRoundKey, SubBytes, ShiftRows.
+ * The aesmc instruction does the MixColumns. Since the aese instruction moves the AddRoundKey
+ * up front, and Cryptonight's hash skips the InitialRound step, we have to kludge it here by
+ * feeding in a vector of zeros for our first step. Also we have to do our own Xor explicitly
+ * at the last step, to provide the AddRoundKey that the ARM instructions omit.
+ */
+STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, int nblocks)
+{
+ const uint8x16_t *k = (const uint8x16_t *)expandedKey, zero = {0};
+ uint8x16_t tmp;
+ int i;
+
+ for (i=0; i<nblocks; i++)
+ {
+ uint8x16_t tmp = vld1q_u8(in + i * AES_BLOCK_SIZE);
+ tmp = vaeseq_u8(tmp, zero);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[0]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[1]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[2]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[3]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[4]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[5]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[6]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[7]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[8]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = veorq_u8(tmp, k[9]);
+ vst1q_u8(out + i * AES_BLOCK_SIZE, tmp);
+ }
+}
+
+STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, const uint8_t *xor, int nblocks)
+{
+ const uint8x16_t *k = (const uint8x16_t *)expandedKey;
+ const uint8x16_t *x = (const uint8x16_t *)xor;
+ uint8x16_t tmp;
+ int i;
+
+ for (i=0; i<nblocks; i++)
+ {
+ uint8x16_t tmp = vld1q_u8(in + i * AES_BLOCK_SIZE);
+ tmp = vaeseq_u8(tmp, x[i]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[0]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[1]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[2]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[3]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[4]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[5]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[6]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[7]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = vaeseq_u8(tmp, k[8]);
+ tmp = vaesmcq_u8(tmp);
+ tmp = veorq_u8(tmp, k[9]);
+ vst1q_u8(out + i * AES_BLOCK_SIZE, tmp);
+ }
+}
+
+void cn_slow_hash(const void *data, size_t length, char *hash)
+{
+ RDATA_ALIGN16 uint8_t expandedKey[240];
+ RDATA_ALIGN16 uint8_t hp_state[MEMORY];
+
+ uint8_t text[INIT_SIZE_BYTE];
+ RDATA_ALIGN16 uint64_t a[2];
+ RDATA_ALIGN16 uint64_t b[2];
+ RDATA_ALIGN16 uint64_t c[2];
+ union cn_slow_hash_state state;
+ uint8x16_t _a, _b, _c, zero = {0};
+ uint64_t hi, lo;
+
+ size_t i, j;
+ uint64_t *p = NULL;
+
+ static void (*const extra_hashes[4])(const void *, size_t, char *) =
+ {
+ hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
+ };
+
+ /* CryptoNight Step 1: Use Keccak1600 to initialize the 'state' (and 'text') buffers from the data. */
+
+ hash_process(&state.hs, data, length);
+ memcpy(text, state.init, INIT_SIZE_BYTE);
+
+ /* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
+ * the 2MB large random access buffer.
+ */
+
+ aes_expand_key(state.hs.b, expandedKey);
+ for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
+ {
+ aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
+ memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
+ }
+
+ U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
+ U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1];
+ U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0];
+ U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1];
+
+ /* CryptoNight Step 3: Bounce randomly 1 million times through the mixing buffer,
+ * using 500,000 iterations of the following mixing function. Each execution
+ * performs two reads and writes from the mixing buffer.
+ */
+
+ _b = vld1q_u8((const uint8_t *)b);
+
+
+ for(i = 0; i < ITER / 2; i++)
+ {
+ pre_aes();
+ _c = vaeseq_u8(_c, zero);
+ _c = vaesmcq_u8(_c);
+ _c = veorq_u8(_c, _a);
+ post_aes();
+ }
+
+ /* CryptoNight Step 4: Sequentially pass through the mixing buffer and use 10 rounds
+ * of AES encryption to mix the random data back into the 'text' buffer. 'text'
+ * was originally created with the output of Keccak1600. */
+
+ memcpy(text, state.init, INIT_SIZE_BYTE);
+
+ aes_expand_key(&state.hs.b[32], expandedKey);
+ for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
+ {
+ // add the xor to the pseudo round
+ aes_pseudo_round_xor(text, text, expandedKey, &hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
+ }
+
+ /* CryptoNight Step 5: Apply Keccak to the state again, and then
+ * use the resulting data to select which of four finalizer
+ * hash functions to apply to the data (Blake, Groestl, JH, or Skein).
+ * Use this hash to squeeze the state array down
+ * to the final 256 bit hash output.
+ */
+
+ memcpy(state.init, text, INIT_SIZE_BYTE);
+ hash_permutation(&state.hs);
+ extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
+}
+#else /* aarch64 && crypto */
+
+// ND: Some minor optimizations for ARMv7 (raspberrry pi 2), effect seems to be ~40-50% faster.
+// Needs more work.
#include "aesb.c"
#ifdef NO_OPTIMIZED_MULTIPLY_ON_ARM
@@ -714,13 +976,21 @@ void mul(const uint8_t *ca, const uint8_t *cb, uint8_t *cres) {
}
#else // !NO_OPTIMIZED_MULTIPLY_ON_ARM
+#ifdef __aarch64__ /* ARM64, no crypto */
+#define mul(a, b, c) cn_mul128((const uint64_t *)a, (const uint64_t *)b, (uint64_t *)c)
+STATIC void cn_mul128(const uint64_t *a, const uint64_t *b, uint64_t *r)
+{
+ uint64_t lo, hi;
+ __asm__("mul %0, %1, %2\n\t" : "=r"(lo) : "r"(a[0]), "r"(b[0]) );
+ __asm__("umulh %0, %1, %2\n\t" : "=r"(hi) : "r"(a[0]), "r"(b[0]) );
+ r[0] = hi;
+ r[1] = lo;
+}
+#else /* ARM32 */
/* Can work as inline, but actually runs slower. Keep it separate */
-#define mul(a, b, c) cn_mul128(a, b, c)
-void mul(const uint8_t *ca, const uint8_t *cb, uint8_t *cr)
+#define mul(a, b, c) cn_mul128((const uint32_t *)a, (const uint32_t *)b, (uint32_t *)c)
+void cn_mul128(const uint32_t *aa, const uint32_t *bb, uint32_t *r)
{
- const uint32_t *aa = (uint32_t *)ca;
- const uint32_t *bb = (uint32_t *)cb;
- uint32_t *r = (uint32_t *)cr;
uint32_t t0, t1;
__asm__ __volatile__(
"umull %[t0], %[t1], %[a], %[b]\n\t"
@@ -743,10 +1013,11 @@ __asm__ __volatile__(
"str %[t0], [%[r]]\n\t"
"str %[t1], [%[r], #4]\n\t"
- : [t0]"=&r"(t0), [t1]"=&r"(t1)
+ : [t0]"=&r"(t0), [t1]"=&r"(t1), "=m"(r[0]), "=m"(r[1]), "=m"(r[2]), "=m"(r[3])
: [A]"r"(aa[1]), [a]"r"(aa[0]), [B]"r"(bb[1]), [b]"r"(bb[0]), [r]"r"(r)
- : "cc", "memory");
+ : "cc");
}
+#endif /* !aarch64 */
#endif // NO_OPTIMIZED_MULTIPLY_ON_ARM
STATIC INLINE void sum_half_blocks(uint8_t* a, const uint8_t* b)
@@ -779,18 +1050,6 @@ STATIC INLINE void xor_blocks(uint8_t* a, const uint8_t* b)
U64(a)[1] ^= U64(b)[1];
}
-#pragma pack(push, 1)
-union cn_slow_hash_state
-{
- union hash_state hs;
- struct
- {
- uint8_t k[64];
- uint8_t init[INIT_SIZE_BYTE];
- };
-};
-#pragma pack(pop)
-
void cn_slow_hash(const void *data, size_t length, char *hash)
{
uint8_t long_state[MEMORY];
@@ -871,6 +1130,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash)
hash_permutation(&state.hs);
extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
}
+#endif /* !aarch64 || !crypto */
#else
// Portable implementation as a fallback
@@ -891,13 +1151,6 @@ static void (*const extra_hashes[4])(const void *, size_t, char *) = {
hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
};
-#define MEMORY (1 << 21) /* 2 MiB */
-#define ITER (1 << 20)
-#define AES_BLOCK_SIZE 16
-#define AES_KEY_SIZE 32 /*16*/
-#define INIT_SIZE_BLK 8
-#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
-
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);