diff options
author | moneromooo-monero <moneromooo-monero@users.noreply.github.com> | 2016-05-13 20:45:20 +0100 |
---|---|---|
committer | moneromooo-monero <moneromooo-monero@users.noreply.github.com> | 2016-08-28 21:26:54 +0100 |
commit | 9b1afe5f2d488c64e3fb5e087055cf66d2165391 (patch) | |
tree | a61056d713db439c80617296b9b3031cb67bd744 /src/ringct/rctOps.cpp | |
parent | Merge pull request #991 (diff) | |
download | monero-9b1afe5f2d488c64e3fb5e087055cf66d2165391.tar.xz |
ringct: import of Shen Noether's ring confidential transactions
Diffstat (limited to 'src/ringct/rctOps.cpp')
-rw-r--r-- | src/ringct/rctOps.cpp | 741 |
1 files changed, 741 insertions, 0 deletions
diff --git a/src/ringct/rctOps.cpp b/src/ringct/rctOps.cpp new file mode 100644 index 000000000..6853becb9 --- /dev/null +++ b/src/ringct/rctOps.cpp @@ -0,0 +1,741 @@ +// Copyright (c) 2016, Monero Research Labs +// +// Author: Shen Noether <shen.noether@gmx.com> +// +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without modification, are +// permitted provided that the following conditions are met: +// +// 1. Redistributions of source code must retain the above copyright notice, this list of +// conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright notice, this list +// of conditions and the following disclaimer in the documentation and/or other +// materials provided with the distribution. +// +// 3. Neither the name of the copyright holder nor the names of its contributors may be +// used to endorse or promote products derived from this software without specific +// prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY +// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL +// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF +// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "rctOps.h" +using namespace crypto; +using namespace std; + +namespace rct { + + //Various key initialization functions + + //Creates a zero scalar + void zero(key &zero) { + int i = 0; + for (i = 0; i < 32; i++) { + zero[i] = (unsigned char)(0x00); + } + } + + //Creates a zero scalar + key zero() { + return{ {0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; + } + + //Creates a zero elliptic curve point + void identity(key &Id) { + int i = 0; + Id[0] = (unsigned char)(0x01); + for (i = 1; i < 32; i++) { + Id[i] = (unsigned char)(0x00); + } + } + + //Creates a zero elliptic curve point + key identity() { + key Id; + int i = 0; + Id[0] = (unsigned char)(0x01); + for (i = 1; i < 32; i++) { + Id[i] = (unsigned char)(0x00); + } + return Id; + } + + //copies a scalar or point + void copy(key &AA, const key &A) { + int i = 0; + for (i = 0; i < 32; i++) { + AA[i] = A.bytes[i]; + } + } + + //copies a scalar or point + key copy(const key &A) { + int i = 0; + key AA; + for (i = 0; i < 32; i++) { + AA[i] = A.bytes[i]; + } + return AA; + } + + + //initializes a key matrix; + //first parameter is rows, + //second is columns + keyM keyMInit(int rows, int cols) { + keyM rv(cols); + int i = 0; + for (i = 0 ; i < cols ; i++) { + rv[i] = keyV(rows); + } + return rv; + } + + + + + //Various key generation functions + + //generates a random scalar which can be used as a secret key or mask + void skGen(key &sk) { + unsigned char tmp[64]; + generate_random_bytes(64, tmp); + memcpy(sk.bytes, tmp, 32); + sc_reduce32(sk.bytes); + } + + //generates a random scalar which can be used as a secret key or mask + key skGen() { + unsigned char tmp[64]; + generate_random_bytes(64, tmp); + key sk; + memcpy(sk.bytes, tmp, 32); + sc_reduce32(sk.bytes); + return sk; + } + + //Generates a vector of secret key + //Mainly used in testing + keyV skvGen(int rows ) { + keyV rv(rows); + int i = 0; + for (i = 0 ; i < rows ; i++) { + skGen(rv[i]); + } + return rv; + } + + //generates a random curve point (for testing) + key pkGen() { + key sk = skGen(); + key pk = scalarmultBase(sk); + return pk; + } + + //generates a random secret and corresponding public key + void skpkGen(key &sk, key &pk) { + skGen(sk); + scalarmultBase(pk, sk); + } + + //generates a random secret and corresponding public key + tuple<key, key> skpkGen() { + key sk = skGen(); + key pk = scalarmultBase(sk); + return make_tuple(sk, pk); + } + + //generates a <secret , public> / Pedersen commitment to the amount + tuple<ctkey, ctkey> ctskpkGen(xmr_amount amount) { + ctkey sk, pk; + skpkGen(sk.dest, pk.dest); + skpkGen(sk.mask, pk.mask); + key am = d2h(amount); + key aH = scalarmultH(am); + addKeys(pk.mask, pk.mask, aH); + return make_tuple(sk, pk); + } + + + //generates a <secret , public> / Pedersen commitment but takes bH as input + tuple<ctkey, ctkey> ctskpkGen(key bH) { + ctkey sk, pk; + skpkGen(sk.dest, pk.dest); + skpkGen(sk.mask, pk.mask); + //key am = d2h(amount); + //key aH = scalarmultH(am); + addKeys(pk.mask, pk.mask, bH); + return make_tuple(sk, pk); + } + + //generates a random uint long long + xmr_amount randXmrAmount(xmr_amount upperlimit) { + return h2d(skGen()) % (upperlimit); + } + + //Scalar multiplications of curve points + + //does a * G where a is a scalar and G is the curve basepoint + void scalarmultBase(key &aG,const key &a) { + ge_p3 point; + sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand! + ge_scalarmult_base(&point, aG.bytes); + ge_p3_tobytes(aG.bytes, &point); + } + + //does a * G where a is a scalar and G is the curve basepoint + key scalarmultBase(const key & a) { + ge_p3 point; + key aG; + sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand + ge_scalarmult_base(&point, aG.bytes); + ge_p3_tobytes(aG.bytes, &point); + return aG; + } + + //does a * P where a is a scalar and P is an arbitrary point + void scalarmultKey(key & aP, const key &P, const key &a) { + ge_p3 A; + ge_p2 R; + ge_frombytes_vartime(&A, P.bytes); + ge_scalarmult(&R, a.bytes, &A); + ge_tobytes(aP.bytes, &R); + } + + //does a * P where a is a scalar and P is an arbitrary point + key scalarmultKey(const key & P, const key & a) { + ge_p3 A; + ge_p2 R; + ge_frombytes_vartime(&A, P.bytes); + ge_scalarmult(&R, a.bytes, &A); + key aP; + ge_tobytes(aP.bytes, &R); + return aP; + } + + + //Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint + key scalarmultH(const key & a) { + ge_p3 A; + ge_p2 R; + key Htmp = { {0x8b, 0x65, 0x59, 0x70, 0x15, 0x37, 0x99, 0xaf, 0x2a, 0xea, 0xdc, 0x9f, 0xf1, 0xad, 0xd0, 0xea, 0x6c, 0x72, 0x51, 0xd5, 0x41, 0x54, 0xcf, 0xa9, 0x2c, 0x17, 0x3a, 0x0d, 0xd3, 0x9c, 0x1f, 0x94} }; + ge_frombytes_vartime(&A, Htmp.bytes); + ge_scalarmult(&R, a.bytes, &A); + key aP; + ge_tobytes(aP.bytes, &R); + return aP; + } + + //Curve addition / subtractions + + //for curve points: AB = A + B + void addKeys(key &AB, const key &A, const key &B) { + ge_p3 B2, A2; + ge_frombytes_vartime(&B2, B.bytes); + ge_frombytes_vartime(&A2, A.bytes); + ge_cached tmp2; + ge_p3_to_cached(&tmp2, &B2); + ge_p1p1 tmp3; + ge_add(&tmp3, &A2, &tmp2); + ge_p1p1_to_p3(&A2, &tmp3); + ge_p3_tobytes(AB.bytes, &A2); + } + + + //addKeys1 + //aGB = aG + B where a is a scalar, G is the basepoint, and B is a point + void addKeys1(key &aGB, const key &a, const key & B) { + key aG = scalarmultBase(a); + addKeys(aGB, aG, B); + } + + //addKeys2 + //aGbB = aG + bB where a, b are scalars, G is the basepoint and B is a point + void addKeys2(key &aGbB, const key &a, const key &b, const key & B) { + ge_p2 rv; + ge_p3 B2; + ge_frombytes_vartime(&B2, B.bytes); + ge_double_scalarmult_base_vartime(&rv, b.bytes, &B2, a.bytes); + ge_tobytes(aGbB.bytes, &rv); + } + + //Does some precomputation to make addKeys3 more efficient + // input B a curve point and output a ge_dsmp which has precomputation applied + void precomp(ge_dsmp rv, const key & B) { + ge_p3 B2; + ge_frombytes_vartime(&B2, B.bytes); + ge_dsm_precomp(rv, &B2); + } + + //addKeys3 + //aAbB = a*A + b*B where a, b are scalars, A, B are curve points + //B must be input after applying "precomp" + void addKeys3(key &aAbB, const key &a, const key &A, const key &b, const ge_dsmp B) { + ge_p2 rv; + ge_p3 A2; + ge_frombytes_vartime(&A2, A.bytes); + ge_double_scalarmult_precomp_vartime(&rv, a.bytes, &A2, b.bytes, B); + ge_tobytes(aAbB.bytes, &rv); + } + + + //subtract Keys (subtracts curve points) + //AB = A - B where A, B are curve points + void subKeys(key & AB, const key &A, const key &B) { + ge_p3 B2, A2; + ge_frombytes_vartime(&B2, B.bytes); + ge_frombytes_vartime(&A2, A.bytes); + ge_cached tmp2; + ge_p3_to_cached(&tmp2, &B2); + ge_p1p1 tmp3; + ge_sub(&tmp3, &A2, &tmp2); + ge_p1p1_to_p3(&A2, &tmp3); + ge_p3_tobytes(AB.bytes, &A2); + } + + //checks if A, B are equal as curve points + //without doing curve operations + bool equalKeys(const key & a, const key & b) { + key eqk; + sc_sub(eqk.bytes, cn_fast_hash(a).bytes, cn_fast_hash(b).bytes); + if (sc_isnonzero(eqk.bytes) ) { + //DP("eq bytes"); + //DP(eqk); + return false; + } + return true; + } + + //Hashing - cn_fast_hash + //be careful these are also in crypto namespace + //cn_fast_hash for arbitrary multiples of 32 bytes + void cn_fast_hash(key &hash, const void * data, const std::size_t l) { + uint8_t md2[32]; + int j = 0; + keccak((uint8_t *)data, l, md2, 32); + for (j = 0; j < 32; j++) { + hash[j] = (unsigned char)md2[j]; + } + } + + void hash_to_scalar(key &hash, const void * data, const std::size_t l) { + cn_fast_hash(hash, data, l); + sc_reduce32(hash.bytes); + } + + //cn_fast_hash for a 32 byte key + void cn_fast_hash(key & hash, const key & in) { + uint8_t md2[32]; + int j = 0; + keccak((uint8_t *)in.bytes, 32, md2, 32); + for (j = 0; j < 32; j++) { + hash[j] = (unsigned char)md2[j]; + } + } + + void hash_to_scalar(key & hash, const key & in) { + cn_fast_hash(hash, in); + sc_reduce32(hash.bytes); + } + + //cn_fast_hash for a 32 byte key + key cn_fast_hash(const key & in) { + uint8_t md2[32]; + int j = 0; + key hash; + keccak((uint8_t *)in.bytes, 32, md2, 32); + for (j = 0; j < 32; j++) { + hash[j] = (unsigned char)md2[j]; + } + return hash; + } + + key hash_to_scalar(const key & in) { + key hash = cn_fast_hash(in); + sc_reduce32(hash.bytes); + return hash; + } + + //cn_fast_hash for a 128 byte unsigned char + key cn_fast_hash128(const void * in) { + uint8_t md2[32]; + int j = 0; + key hash; + keccak((uint8_t *)in, 128, md2, 32); + for (j = 0; j < 32; j++) { + hash[j] = (unsigned char)md2[j]; + } + return hash; + } + + key hash_to_scalar128(const void * in) { + key hash = cn_fast_hash128(in); + sc_reduce32(hash.bytes); + return hash; + } + + //cn_fast_hash for multisig purpose + //This takes the outputs and commitments + //and hashes them into a 32 byte sized key + key cn_fast_hash(ctkeyV PC) { + key rv = identity(); + std::size_t l = (std::size_t)PC.size(); + size_t i = 0, j = 0; + vector<char> m(l * 64); + for (i = 0 ; i < l ; i++) { + for (j = 0 ; j < 32 ; j++) { + m[i * 64 + j] = PC[i].dest[j]; + m[i * 64 + 32 + j] = PC[i].mask[j]; + } + } + cn_fast_hash(rv, &m[0], l); + return rv; + } + + key hash_to_scalar(ctkeyV PC) { + key rv = cn_fast_hash(PC); + sc_reduce32(rv.bytes); + return rv; + } + + key hashToPointSimple(const key & hh) { + key pointk; + ge_p3 res; + key h = cn_fast_hash(hh); + ge_frombytes_vartime(&res, h.bytes); + ge_p3_tobytes(pointk.bytes, &res); + return pointk; + } + + key hashToPoint(const key & hh) { + key pointk; + ge_p2 point; + ge_p1p1 point2; + ge_p3 res; + key h = cn_fast_hash(hh); + ge_fromfe_frombytes_vartime(&point, h.bytes); + ge_mul8(&point2, &point); + ge_p1p1_to_p3(&res, &point2); + ge_p3_tobytes(pointk.bytes, &res); + return pointk; + } + +void fe_mul(fe h,const fe f,const fe g) +{ + int32_t f0 = f[0]; + int32_t f1 = f[1]; + int32_t f2 = f[2]; + int32_t f3 = f[3]; + int32_t f4 = f[4]; + int32_t f5 = f[5]; + int32_t f6 = f[6]; + int32_t f7 = f[7]; + int32_t f8 = f[8]; + int32_t f9 = f[9]; + int32_t g0 = g[0]; + int32_t g1 = g[1]; + int32_t g2 = g[2]; + int32_t g3 = g[3]; + int32_t g4 = g[4]; + int32_t g5 = g[5]; + int32_t g6 = g[6]; + int32_t g7 = g[7]; + int32_t g8 = g[8]; + int32_t g9 = g[9]; + int32_t g1_19 = 19 * g1; /* 1.959375*2^29 */ + int32_t g2_19 = 19 * g2; /* 1.959375*2^30; still ok */ + int32_t g3_19 = 19 * g3; + int32_t g4_19 = 19 * g4; + int32_t g5_19 = 19 * g5; + int32_t g6_19 = 19 * g6; + int32_t g7_19 = 19 * g7; + int32_t g8_19 = 19 * g8; + int32_t g9_19 = 19 * g9; + int32_t f1_2 = 2 * f1; + int32_t f3_2 = 2 * f3; + int32_t f5_2 = 2 * f5; + int32_t f7_2 = 2 * f7; + int32_t f9_2 = 2 * f9; + int64_t f0g0 = f0 * (int64_t) g0; + int64_t f0g1 = f0 * (int64_t) g1; + int64_t f0g2 = f0 * (int64_t) g2; + int64_t f0g3 = f0 * (int64_t) g3; + int64_t f0g4 = f0 * (int64_t) g4; + int64_t f0g5 = f0 * (int64_t) g5; + int64_t f0g6 = f0 * (int64_t) g6; + int64_t f0g7 = f0 * (int64_t) g7; + int64_t f0g8 = f0 * (int64_t) g8; + int64_t f0g9 = f0 * (int64_t) g9; + int64_t f1g0 = f1 * (int64_t) g0; + int64_t f1g1_2 = f1_2 * (int64_t) g1; + int64_t f1g2 = f1 * (int64_t) g2; + int64_t f1g3_2 = f1_2 * (int64_t) g3; + int64_t f1g4 = f1 * (int64_t) g4; + int64_t f1g5_2 = f1_2 * (int64_t) g5; + int64_t f1g6 = f1 * (int64_t) g6; + int64_t f1g7_2 = f1_2 * (int64_t) g7; + int64_t f1g8 = f1 * (int64_t) g8; + int64_t f1g9_38 = f1_2 * (int64_t) g9_19; + int64_t f2g0 = f2 * (int64_t) g0; + int64_t f2g1 = f2 * (int64_t) g1; + int64_t f2g2 = f2 * (int64_t) g2; + int64_t f2g3 = f2 * (int64_t) g3; + int64_t f2g4 = f2 * (int64_t) g4; + int64_t f2g5 = f2 * (int64_t) g5; + int64_t f2g6 = f2 * (int64_t) g6; + int64_t f2g7 = f2 * (int64_t) g7; + int64_t f2g8_19 = f2 * (int64_t) g8_19; + int64_t f2g9_19 = f2 * (int64_t) g9_19; + int64_t f3g0 = f3 * (int64_t) g0; + int64_t f3g1_2 = f3_2 * (int64_t) g1; + int64_t f3g2 = f3 * (int64_t) g2; + int64_t f3g3_2 = f3_2 * (int64_t) g3; + int64_t f3g4 = f3 * (int64_t) g4; + int64_t f3g5_2 = f3_2 * (int64_t) g5; + int64_t f3g6 = f3 * (int64_t) g6; + int64_t f3g7_38 = f3_2 * (int64_t) g7_19; + int64_t f3g8_19 = f3 * (int64_t) g8_19; + int64_t f3g9_38 = f3_2 * (int64_t) g9_19; + int64_t f4g0 = f4 * (int64_t) g0; + int64_t f4g1 = f4 * (int64_t) g1; + int64_t f4g2 = f4 * (int64_t) g2; + int64_t f4g3 = f4 * (int64_t) g3; + int64_t f4g4 = f4 * (int64_t) g4; + int64_t f4g5 = f4 * (int64_t) g5; + int64_t f4g6_19 = f4 * (int64_t) g6_19; + int64_t f4g7_19 = f4 * (int64_t) g7_19; + int64_t f4g8_19 = f4 * (int64_t) g8_19; + int64_t f4g9_19 = f4 * (int64_t) g9_19; + int64_t f5g0 = f5 * (int64_t) g0; + int64_t f5g1_2 = f5_2 * (int64_t) g1; + int64_t f5g2 = f5 * (int64_t) g2; + int64_t f5g3_2 = f5_2 * (int64_t) g3; + int64_t f5g4 = f5 * (int64_t) g4; + int64_t f5g5_38 = f5_2 * (int64_t) g5_19; + int64_t f5g6_19 = f5 * (int64_t) g6_19; + int64_t f5g7_38 = f5_2 * (int64_t) g7_19; + int64_t f5g8_19 = f5 * (int64_t) g8_19; + int64_t f5g9_38 = f5_2 * (int64_t) g9_19; + int64_t f6g0 = f6 * (int64_t) g0; + int64_t f6g1 = f6 * (int64_t) g1; + int64_t f6g2 = f6 * (int64_t) g2; + int64_t f6g3 = f6 * (int64_t) g3; + int64_t f6g4_19 = f6 * (int64_t) g4_19; + int64_t f6g5_19 = f6 * (int64_t) g5_19; + int64_t f6g6_19 = f6 * (int64_t) g6_19; + int64_t f6g7_19 = f6 * (int64_t) g7_19; + int64_t f6g8_19 = f6 * (int64_t) g8_19; + int64_t f6g9_19 = f6 * (int64_t) g9_19; + int64_t f7g0 = f7 * (int64_t) g0; + int64_t f7g1_2 = f7_2 * (int64_t) g1; + int64_t f7g2 = f7 * (int64_t) g2; + int64_t f7g3_38 = f7_2 * (int64_t) g3_19; + int64_t f7g4_19 = f7 * (int64_t) g4_19; + int64_t f7g5_38 = f7_2 * (int64_t) g5_19; + int64_t f7g6_19 = f7 * (int64_t) g6_19; + int64_t f7g7_38 = f7_2 * (int64_t) g7_19; + int64_t f7g8_19 = f7 * (int64_t) g8_19; + int64_t f7g9_38 = f7_2 * (int64_t) g9_19; + int64_t f8g0 = f8 * (int64_t) g0; + int64_t f8g1 = f8 * (int64_t) g1; + int64_t f8g2_19 = f8 * (int64_t) g2_19; + int64_t f8g3_19 = f8 * (int64_t) g3_19; + int64_t f8g4_19 = f8 * (int64_t) g4_19; + int64_t f8g5_19 = f8 * (int64_t) g5_19; + int64_t f8g6_19 = f8 * (int64_t) g6_19; + int64_t f8g7_19 = f8 * (int64_t) g7_19; + int64_t f8g8_19 = f8 * (int64_t) g8_19; + int64_t f8g9_19 = f8 * (int64_t) g9_19; + int64_t f9g0 = f9 * (int64_t) g0; + int64_t f9g1_38 = f9_2 * (int64_t) g1_19; + int64_t f9g2_19 = f9 * (int64_t) g2_19; + int64_t f9g3_38 = f9_2 * (int64_t) g3_19; + int64_t f9g4_19 = f9 * (int64_t) g4_19; + int64_t f9g5_38 = f9_2 * (int64_t) g5_19; + int64_t f9g6_19 = f9 * (int64_t) g6_19; + int64_t f9g7_38 = f9_2 * (int64_t) g7_19; + int64_t f9g8_19 = f9 * (int64_t) g8_19; + int64_t f9g9_38 = f9_2 * (int64_t) g9_19; + int64_t h0 = f0g0+f1g9_38+f2g8_19+f3g7_38+f4g6_19+f5g5_38+f6g4_19+f7g3_38+f8g2_19+f9g1_38; + int64_t h1 = f0g1+f1g0 +f2g9_19+f3g8_19+f4g7_19+f5g6_19+f6g5_19+f7g4_19+f8g3_19+f9g2_19; + int64_t h2 = f0g2+f1g1_2 +f2g0 +f3g9_38+f4g8_19+f5g7_38+f6g6_19+f7g5_38+f8g4_19+f9g3_38; + int64_t h3 = f0g3+f1g2 +f2g1 +f3g0 +f4g9_19+f5g8_19+f6g7_19+f7g6_19+f8g5_19+f9g4_19; + int64_t h4 = f0g4+f1g3_2 +f2g2 +f3g1_2 +f4g0 +f5g9_38+f6g8_19+f7g7_38+f8g6_19+f9g5_38; + int64_t h5 = f0g5+f1g4 +f2g3 +f3g2 +f4g1 +f5g0 +f6g9_19+f7g8_19+f8g7_19+f9g6_19; + int64_t h6 = f0g6+f1g5_2 +f2g4 +f3g3_2 +f4g2 +f5g1_2 +f6g0 +f7g9_38+f8g8_19+f9g7_38; + int64_t h7 = f0g7+f1g6 +f2g5 +f3g4 +f4g3 +f5g2 +f6g1 +f7g0 +f8g9_19+f9g8_19; + int64_t h8 = f0g8+f1g7_2 +f2g6 +f3g5_2 +f4g4 +f5g3_2 +f6g2 +f7g1_2 +f8g0 +f9g9_38; + int64_t h9 = f0g9+f1g8 +f2g7 +f3g6 +f4g5 +f5g4 +f6g3 +f7g2 +f8g1 +f9g0 ; + int64_t carry0; + int64_t carry1; + int64_t carry2; + int64_t carry3; + int64_t carry4; + int64_t carry5; + int64_t carry6; + int64_t carry7; + int64_t carry8; + int64_t carry9; + + /* + |h0| <= (1.65*1.65*2^52*(1+19+19+19+19)+1.65*1.65*2^50*(38+38+38+38+38)) + i.e. |h0| <= 1.4*2^60; narrower ranges for h2, h4, h6, h8 + |h1| <= (1.65*1.65*2^51*(1+1+19+19+19+19+19+19+19+19)) + i.e. |h1| <= 1.7*2^59; narrower ranges for h3, h5, h7, h9 + */ + + carry0 = (h0 + (int64_t) (1<<25)) >> 26; + h1 += carry0; + h0 -= carry0 << 26; + carry4 = (h4 + (int64_t) (1<<25)) >> 26; + h5 += carry4; + h4 -= carry4 << 26; + /* |h0| <= 2^25 */ + /* |h4| <= 2^25 */ + /* |h1| <= 1.71*2^59 */ + /* |h5| <= 1.71*2^59 */ + + carry1 = (h1 + (int64_t) (1<<24)) >> 25; + h2 += carry1; + h1 -= carry1 << 25; + carry5 = (h5 + (int64_t) (1<<24)) >> 25; + h6 += carry5; + h5 -= carry5 << 25; + /* |h1| <= 2^24; from now on fits into int32 */ + /* |h5| <= 2^24; from now on fits into int32 */ + /* |h2| <= 1.41*2^60 */ + /* |h6| <= 1.41*2^60 */ + + carry2 = (h2 + (int64_t) (1<<25)) >> 26; + h3 += carry2; + h2 -= carry2 << 26; + carry6 = (h6 + (int64_t) (1<<25)) >> 26; + h7 += carry6; + h6 -= carry6 << 26; + /* |h2| <= 2^25; from now on fits into int32 unchanged */ + /* |h6| <= 2^25; from now on fits into int32 unchanged */ + /* |h3| <= 1.71*2^59 */ + /* |h7| <= 1.71*2^59 */ + + carry3 = (h3 + (int64_t) (1<<24)) >> 25; + h4 += carry3; + h3 -= carry3 << 25; + carry7 = (h7 + (int64_t) (1<<24)) >> 25; + h8 += carry7; + h7 -= carry7 << 25; + /* |h3| <= 2^24; from now on fits into int32 unchanged */ + /* |h7| <= 2^24; from now on fits into int32 unchanged */ + /* |h4| <= 1.72*2^34 */ + /* |h8| <= 1.41*2^60 */ + + carry4 = (h4 + (int64_t) (1<<25)) >> 26; + h5 += carry4; + h4 -= carry4 << 26; + carry8 = (h8 + (int64_t) (1<<25)) >> 26; + h9 += carry8; + h8 -= carry8 << 26; + /* |h4| <= 2^25; from now on fits into int32 unchanged */ + /* |h8| <= 2^25; from now on fits into int32 unchanged */ + /* |h5| <= 1.01*2^24 */ + /* |h9| <= 1.71*2^59 */ + + carry9 = (h9 + (int64_t) (1<<24)) >> 25; + h0 += carry9 * 19; + h9 -= carry9 << 25; + /* |h9| <= 2^24; from now on fits into int32 unchanged */ + /* |h0| <= 1.1*2^39 */ + + carry0 = (h0 + (int64_t) (1<<25)) >> 26; + h1 += carry0; + h0 -= carry0 << 26; + /* |h0| <= 2^25; from now on fits into int32 unchanged */ + /* |h1| <= 1.01*2^24 */ + + h[0] = h0; + h[1] = h1; + h[2] = h2; + h[3] = h3; + h[4] = h4; + h[5] = h5; + h[6] = h6; + h[7] = h7; + h[8] = h8; + h[9] = h9; +} + + + +void ge_tobytes2(unsigned char *s,const ge_p2 *h) +{ + fe recip; + fe x; + fe y; + fe_invert(recip,h->Z); + fe_mul(x,h->X,recip); + fe_mul(y,h->Y,recip); + + + fe_tobytes(s,y); +} + + + key hashToPoint2(const key & hh) { + key pointk; + ge_p2 point; + key h = cn_fast_hash(hh); + ge_fromfe_frombytes_vartime(&point, h.bytes); + ge_tobytes2(pointk.bytes, &point); + return pointk; + } + + + void hashToPoint(key & pointk, const key & hh) { + ge_p2 point; + ge_p1p1 point2; + ge_p3 res; + key h = cn_fast_hash(hh); + ge_fromfe_frombytes_vartime(&point, h.bytes); + ge_mul8(&point2, &point); + ge_p1p1_to_p3(&res, &point2); + ge_p3_tobytes(pointk.bytes, &res); + } + + //sums a vector of curve points (for scalars use sc_add) + void sumKeys(key & Csum, const keyV & Cis) { + identity(Csum); + size_t i = 0; + for (i = 0; i < Cis.size(); i++) { + addKeys(Csum, Csum, Cis[i]); + } + } + + //Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a + // where C= aG + bH + void ecdhEncode(ecdhTuple & unmasked, const key & receiverPk) { + key esk; + //compute shared secret + skpkGen(esk, unmasked.senderPk); + key sharedSec1 = hash_to_scalar(scalarmultKey(receiverPk, esk)); + key sharedSec2 = hash_to_scalar(sharedSec1); + //encode + sc_add(unmasked.mask.bytes, unmasked.mask.bytes, sharedSec1.bytes); + sc_add(unmasked.amount.bytes, unmasked.amount.bytes, sharedSec2.bytes); + } + void ecdhDecode(ecdhTuple & masked, const key & receiverSk) { + //compute shared secret + key sharedSec1 = hash_to_scalar(scalarmultKey(masked.senderPk, receiverSk)); + key sharedSec2 = hash_to_scalar(sharedSec1); + //encode + sc_sub(masked.mask.bytes, masked.mask.bytes, sharedSec1.bytes); + sc_sub(masked.amount.bytes, masked.amount.bytes, sharedSec2.bytes); + } +} |