diff options
author | moneromooo-monero <moneromooo-monero@users.noreply.github.com> | 2018-01-03 21:37:18 +0000 |
---|---|---|
committer | moneromooo-monero <moneromooo-monero@users.noreply.github.com> | 2018-09-11 13:37:17 +0000 |
commit | aacfd6e3702810c43365658da61bb1afc7470fd5 (patch) | |
tree | c33a41a4db2b2f9584bb4a81d8432e23a7d55a8e /src/ringct/bulletproofs.cc | |
parent | performance_tests: don't override log level to 0 (diff) | |
download | monero-aacfd6e3702810c43365658da61bb1afc7470fd5.tar.xz |
bulletproofs: multi-output bulletproofs
Diffstat (limited to 'src/ringct/bulletproofs.cc')
-rw-r--r-- | src/ringct/bulletproofs.cc | 348 |
1 files changed, 316 insertions, 32 deletions
diff --git a/src/ringct/bulletproofs.cc b/src/ringct/bulletproofs.cc index fd15ffbc4..40d097f20 100644 --- a/src/ringct/bulletproofs.cc +++ b/src/ringct/bulletproofs.cc @@ -51,14 +51,16 @@ namespace rct { static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b); -static rct::keyV vector_powers(rct::key x, size_t n); +static rct::keyV vector_powers(const rct::key &x, size_t n); +static rct::keyV vector_dup(const rct::key &x, size_t n); static rct::key inner_product(const rct::keyV &a, const rct::keyV &b); static constexpr size_t maxN = 64; -static rct::key Hi[maxN], Gi[maxN]; -static ge_dsmp Gprecomp[64], Hprecomp[64]; +static constexpr size_t maxM = 16; +static rct::key Hi[maxN*maxM], Gi[maxN*maxM]; +static ge_dsmp Gprecomp[maxN*maxM], Hprecomp[maxN*maxM]; static const rct::key TWO = { {0x02, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; -static const rct::keyV oneN = vector_powers(rct::identity(), maxN); +static const rct::keyV oneN = vector_dup(rct::identity(), maxN); static const rct::keyV twoN = vector_powers(TWO, maxN); static const rct::key ip12 = inner_product(oneN, twoN); static boost::mutex init_mutex; @@ -77,7 +79,7 @@ static void init_exponents() static bool init_done = false; if (init_done) return; - for (size_t i = 0; i < maxN; ++i) + for (size_t i = 0; i < maxN*maxM; ++i) { Hi[i] = get_exponent(rct::H, i * 2); rct::precomp(Hprecomp[i], Hi[i]); @@ -91,7 +93,7 @@ static void init_exponents() static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); - CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN"); + CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN*maxM, "Incompatible sizes of a and maxN"); rct::key res = rct::identity(); for (size_t i = 0; i < a.size(); ++i) { @@ -108,7 +110,7 @@ static rct::key vector_exponent_custom(const rct::keyV &A, const rct::keyV &B, c CHECK_AND_ASSERT_THROW_MES(A.size() == B.size(), "Incompatible sizes of A and B"); CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); CHECK_AND_ASSERT_THROW_MES(a.size() == A.size(), "Incompatible sizes of a and A"); - CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN"); + CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN*maxM, "Incompatible sizes of a and maxN"); rct::key res = rct::identity(); for (size_t i = 0; i < a.size(); ++i) { @@ -145,7 +147,7 @@ static rct::key vector_exponent_custom(const rct::keyV &A, const rct::keyV &B, c } /* Given a scalar, construct a vector of powers */ -static rct::keyV vector_powers(rct::key x, size_t n) +static rct::keyV vector_powers(const rct::key &x, size_t n) { rct::keyV res(n); if (n == 0) @@ -232,6 +234,12 @@ static rct::keyV vector_scalar(const rct::keyV &a, const rct::key &x) return res; } +/* Create a vector from copies of a single value */ +static rct::keyV vector_dup(const rct::key &x, size_t N) +{ + return rct::keyV(N, x); +} + /* Exponentiate a curve vector by a scalar */ static rct::keyV vector_scalar2(const rct::keyV &a, const rct::key &x) { @@ -243,6 +251,17 @@ static rct::keyV vector_scalar2(const rct::keyV &a, const rct::key &x) return res; } +/* Get the sum of a vector's elements */ +static rct::key vector_sum(const rct::keyV &a) +{ + rct::key res = rct::zero(); + for (size_t i = 0; i < a.size(); ++i) + { + sc_add(res.bytes, res.bytes, a[i].bytes); + } + return res; +} + static rct::key switch_endianness(rct::key k) { std::reverse(k.bytes, k.bytes + sizeof(k)); @@ -405,7 +424,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) const auto yN = vector_powers(y, N); - rct::key ip1y = inner_product(oneN, yN); + rct::key ip1y = vector_sum(yN); rct::key tmp; sc_muladd(t0.bytes, z.bytes, ip1y.bytes, t0.bytes); @@ -437,7 +456,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) PERF_TIMER_START_BP(PROVE_step2); const auto HyNsR = hadamard(yN, sR); - const auto vpIz = vector_scalar(oneN, z); + const auto vpIz = vector_dup(z, N); const auto vp2zsq = vector_scalar(twoN, zsq); const auto aL_vpIz = vector_subtract(aL, vpIz); const auto aR_vpIz = vector_add(aR, vpIz); @@ -567,23 +586,284 @@ Bulletproof bulletproof_PROVE(uint64_t v, const rct::key &gamma) return bulletproof_PROVE(sv, gamma); } +/* Given a set of values v (0..2^N-1) and masks gamma, construct a range proof */ +Bulletproof bulletproof_PROVE(const rct::keyV &sv, const rct::keyV &gamma) +{ + CHECK_AND_ASSERT_THROW_MES(sv.size() == gamma.size(), "Incompatible sizes of sv and gamma"); + CHECK_AND_ASSERT_THROW_MES(!sv.empty(), "sv is empty"); + + init_exponents(); + + PERF_TIMER_UNIT(PROVE, 1000000); + + constexpr size_t logN = 6; // log2(64) + constexpr size_t N = 1<<logN; + size_t M, logM; + for (logM = 0; (M = 1<<logM) <= maxM && M < sv.size(); ++logM); + CHECK_AND_ASSERT_THROW_MES(M <= maxM, "sv/gamma are too large"); + const size_t logMN = logM + logN; + const size_t MN = M * N; + + rct::keyV V(sv.size()); + rct::keyV aL(MN), aR(MN); + rct::key tmp; + + PERF_TIMER_START_BP(PROVE_v); + for (size_t i = 0; i < sv.size(); ++i) + rct::addKeys2(V[i], gamma[i], sv[i], rct::H); + PERF_TIMER_STOP(PROVE_v); + + PERF_TIMER_START_BP(PROVE_aLaR); + for (size_t j = 0; j < M; ++j) + { + for (size_t i = N; i-- > 0; ) + { + if (j >= sv.size()) + { + aL[j*N+i] = rct::zero(); + } + else if (sv[j][i/8] & (((uint64_t)1)<<(i%8))) + { + aL[j*N+i] = rct::identity(); + } + else + { + aL[j*N+i] = rct::zero(); + } + sc_sub(aR[j*N+i].bytes, aL[j*N+i].bytes, rct::identity().bytes); + } + } + PERF_TIMER_STOP(PROVE_aLaR); + + rct::key hash_cache = rct::hash_to_scalar(V); + + // DEBUG: Test to ensure this recovers the value +#ifdef DEBUG_BP + for (size_t j = 0; j < M; ++j) + { + uint64_t test_aL = 0, test_aR = 0; + for (size_t i = 0; i < N; ++i) + { + if (aL[j*N+i] == rct::identity()) + test_aL += ((uint64_t)1)<<i; + if (aR[j*N+i] == rct::zero()) + test_aR += ((uint64_t)1)<<i; + } + uint64_t v_test = 0; + if (j < sv.size()) + for (int n = 0; n < 8; ++n) v_test |= (((uint64_t)sv[j][n]) << (8*n)); + CHECK_AND_ASSERT_THROW_MES(test_aL == v_test, "test_aL failed"); + CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed"); + } +#endif + + PERF_TIMER_START_BP(PROVE_step1); + // PAPER LINES 38-39 + rct::key alpha = rct::skGen(); + rct::key ve = vector_exponent(aL, aR); + rct::key A; + rct::addKeys(A, ve, rct::scalarmultBase(alpha)); + + // PAPER LINES 40-42 + rct::keyV sL = rct::skvGen(MN), sR = rct::skvGen(MN); + rct::key rho = rct::skGen(); + ve = vector_exponent(sL, sR); + rct::key S; + rct::addKeys(S, ve, rct::scalarmultBase(rho)); + + // PAPER LINES 43-45 + rct::key y = hash_cache_mash(hash_cache, A, S); + rct::key z = hash_cache = rct::hash_to_scalar(y); + + // Polynomial construction by coefficients + const auto zMN = vector_dup(z, MN); + rct::keyV l0 = vector_subtract(aL, zMN); + const rct::keyV &l1 = sL; + + // This computes the ugly sum/concatenation from PAPER LINE 65 + rct::keyV zero_twos(MN); + const rct::keyV zpow = vector_powers(z, M+2); + for (size_t i = 0; i < MN; ++i) + { + zero_twos[i] = rct::zero(); + for (size_t j = 1; j <= M; ++j) + { + if (i >= (j-1)*N && i < j*N) + { + CHECK_AND_ASSERT_THROW_MES(1+j < zpow.size(), "invalid zpow index"); + CHECK_AND_ASSERT_THROW_MES(i-(j-1)*N < twoN.size(), "invalid twoN index"); + sc_muladd(zero_twos[i].bytes, zpow[1+j].bytes, twoN[i-(j-1)*N].bytes, zero_twos[i].bytes); + } + } + } + + rct::keyV r0 = vector_add(aR, zMN); + const auto yMN = vector_powers(y, MN); + r0 = hadamard(r0, yMN); + r0 = vector_add(r0, zero_twos); + rct::keyV r1 = hadamard(yMN, sR); + + // Polynomial construction before PAPER LINE 46 + rct::key t1_1 = inner_product(l0, r1); + rct::key t1_2 = inner_product(l1, r0); + rct::key t1; + sc_add(t1.bytes, t1_1.bytes, t1_2.bytes); + rct::key t2 = inner_product(l1, r1); + + PERF_TIMER_STOP(PROVE_step1); + + PERF_TIMER_START_BP(PROVE_step2); + // PAPER LINES 47-48 + rct::key tau1 = rct::skGen(), tau2 = rct::skGen(); + + rct::key T1 = rct::addKeys(rct::scalarmultKey(rct::H, t1), rct::scalarmultBase(tau1)); + rct::key T2 = rct::addKeys(rct::scalarmultKey(rct::H, t2), rct::scalarmultBase(tau2)); + + // PAPER LINES 49-51 + rct::key x = hash_cache_mash(hash_cache, z, T1, T2); + + // PAPER LINES 52-53 + rct::key taux; + sc_mul(taux.bytes, tau1.bytes, x.bytes); + rct::key xsq; + sc_mul(xsq.bytes, x.bytes, x.bytes); + sc_muladd(taux.bytes, tau2.bytes, xsq.bytes, taux.bytes); + for (size_t j = 1; j <= sv.size(); ++j) + { + CHECK_AND_ASSERT_THROW_MES(j+1 < zpow.size(), "invalid zpow index"); + sc_muladd(taux.bytes, zpow[j+1].bytes, gamma[j-1].bytes, taux.bytes); + } + rct::key mu; + sc_muladd(mu.bytes, x.bytes, rho.bytes, alpha.bytes); + + // PAPER LINES 54-57 + rct::keyV l = l0; + l = vector_add(l, vector_scalar(l1, x)); + rct::keyV r = r0; + r = vector_add(r, vector_scalar(r1, x)); + PERF_TIMER_STOP(PROVE_step2); + + PERF_TIMER_START_BP(PROVE_step3); + rct::key t = inner_product(l, r); + + // DEBUG: Test if the l and r vectors match the polynomial forms +#ifdef DEBUG_BP + rct::key test_t; + const rct::key t0 = inner_product(l0, r0); + sc_muladd(test_t.bytes, t1.bytes, x.bytes, t0.bytes); + sc_muladd(test_t.bytes, t2.bytes, xsq.bytes, test_t.bytes); + CHECK_AND_ASSERT_THROW_MES(test_t == t, "test_t check failed"); +#endif + + // PAPER LINES 32-33 + rct::key x_ip = hash_cache_mash(hash_cache, x, taux, mu, t); + + // These are used in the inner product rounds + size_t nprime = MN; + rct::keyV Gprime(MN); + rct::keyV Hprime(MN); + rct::keyV aprime(MN); + rct::keyV bprime(MN); + const rct::key yinv = invert(y); + rct::key yinvpow = rct::identity(); + for (size_t i = 0; i < MN; ++i) + { + Gprime[i] = Gi[i]; + Hprime[i] = scalarmultKey(Hi[i], yinvpow); + sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); + aprime[i] = l[i]; + bprime[i] = r[i]; + } + rct::keyV L(logMN); + rct::keyV R(logMN); + int round = 0; + rct::keyV w(logMN); // this is the challenge x in the inner product protocol + PERF_TIMER_STOP(PROVE_step3); + + PERF_TIMER_START_BP(PROVE_step4); + // PAPER LINE 13 + while (nprime > 1) + { + // PAPER LINE 15 + nprime /= 2; + + // PAPER LINES 16-17 + rct::key cL = inner_product(slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size())); + rct::key cR = inner_product(slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime)); + + // PAPER LINES 18-19 + L[round] = vector_exponent_custom(slice(Gprime, nprime, Gprime.size()), slice(Hprime, 0, nprime), slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size())); + sc_mul(tmp.bytes, cL.bytes, x_ip.bytes); + rct::addKeys(L[round], L[round], rct::scalarmultKey(rct::H, tmp)); + R[round] = vector_exponent_custom(slice(Gprime, 0, nprime), slice(Hprime, nprime, Hprime.size()), slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime)); + sc_mul(tmp.bytes, cR.bytes, x_ip.bytes); + rct::addKeys(R[round], R[round], rct::scalarmultKey(rct::H, tmp)); + + // PAPER LINES 21-22 + w[round] = hash_cache_mash(hash_cache, L[round], R[round]); + + // PAPER LINES 24-25 + const rct::key winv = invert(w[round]); + Gprime = hadamard2(vector_scalar2(slice(Gprime, 0, nprime), winv), vector_scalar2(slice(Gprime, nprime, Gprime.size()), w[round])); + Hprime = hadamard2(vector_scalar2(slice(Hprime, 0, nprime), w[round]), vector_scalar2(slice(Hprime, nprime, Hprime.size()), winv)); + + // PAPER LINES 28-29 + aprime = vector_add(vector_scalar(slice(aprime, 0, nprime), w[round]), vector_scalar(slice(aprime, nprime, aprime.size()), winv)); + bprime = vector_add(vector_scalar(slice(bprime, 0, nprime), winv), vector_scalar(slice(bprime, nprime, bprime.size()), w[round])); + + ++round; + } + PERF_TIMER_STOP(PROVE_step4); + + // PAPER LINE 58 (with inclusions from PAPER LINE 8 and PAPER LINE 20) + return Bulletproof(V, A, S, T1, T2, taux, mu, L, R, aprime[0], bprime[0], t); +} + +Bulletproof bulletproof_PROVE(const std::vector<uint64_t> &v, const rct::keyV &gamma) +{ + CHECK_AND_ASSERT_THROW_MES(v.size() == gamma.size(), "Incompatible sizes of v and gamma"); + + // vG + gammaH + PERF_TIMER_START_BP(PROVE_v); + rct::keyV sv(v.size()); + for (size_t i = 0; i < v.size(); ++i) + { + sv[i] = rct::zero(); + sv[i].bytes[0] = v[i] & 255; + sv[i].bytes[1] = (v[i] >> 8) & 255; + sv[i].bytes[2] = (v[i] >> 16) & 255; + sv[i].bytes[3] = (v[i] >> 24) & 255; + sv[i].bytes[4] = (v[i] >> 32) & 255; + sv[i].bytes[5] = (v[i] >> 40) & 255; + sv[i].bytes[6] = (v[i] >> 48) & 255; + sv[i].bytes[7] = (v[i] >> 56) & 255; + } + PERF_TIMER_STOP(PROVE_v); + return bulletproof_PROVE(sv, gamma); +} + /* Given a range proof, determine if it is valid */ bool bulletproof_VERIFY(const Bulletproof &proof) { init_exponents(); - CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "V does not have exactly one element"); + CHECK_AND_ASSERT_MES(proof.V.size() >= 1, false, "V does not have at least one element"); CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes"); CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof"); - CHECK_AND_ASSERT_MES(proof.L.size() == 6, false, "Proof is not for 64 bits"); - const size_t logN = proof.L.size(); + const size_t logN = 6; const size_t N = 1 << logN; + rct::key tmp, tmp2; + + size_t M, logM; + for (logM = 0; (M = 1<<logM) <= maxM && M < proof.V.size(); ++logM); + CHECK_AND_ASSERT_MES(proof.L.size() == 6+logM, false, "Proof is not the expected size"); + const size_t MN = M*N; // Reconstruct the challenges PERF_TIMER_START_BP(VERIFY); PERF_TIMER_START_BP(VERIFY_start); - rct::key hash_cache = rct::hash_to_scalar(proof.V[0]); + rct::key hash_cache = rct::hash_to_scalar(proof.V); rct::key y = hash_cache_mash(hash_cache, proof.A, proof.S); rct::key z = hash_cache = rct::hash_to_scalar(y); rct::key x = hash_cache_mash(hash_cache, z, proof.T1, proof.T2); @@ -598,25 +878,27 @@ bool bulletproof_VERIFY(const Bulletproof &proof) // PAPER LINE 61 rct::key L61Left = rct::addKeys(rct::scalarmultBase(proof.taux), rct::scalarmultKey(rct::H, proof.t)); - rct::key k = rct::zero(); - const auto yN = vector_powers(y, N); - rct::key ip1y = inner_product(oneN, yN); - rct::key zsq; - sc_mul(zsq.bytes, z.bytes, z.bytes); - rct::key tmp, tmp2; - sc_mulsub(k.bytes, zsq.bytes, ip1y.bytes, k.bytes); - rct::key zcu; - sc_mul(zcu.bytes, zsq.bytes, z.bytes); - sc_mulsub(k.bytes, zcu.bytes, ip12.bytes, k.bytes); + const rct::keyV zpow = vector_powers(z, M+3); + + rct::key k; + const rct::key ip1y = vector_sum(vector_powers(y, MN)); + sc_mulsub(k.bytes, zpow[2].bytes, ip1y.bytes, rct::zero().bytes); + for (size_t j = 1; j <= M; ++j) + { + CHECK_AND_ASSERT_MES(j+2 < zpow.size(), false, "invalid zpow index"); + sc_mulsub(k.bytes, zpow[j+2].bytes, ip12.bytes, k.bytes); + } PERF_TIMER_STOP(VERIFY_line_61); PERF_TIMER_START_BP(VERIFY_line_61rl); sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes); rct::key L61Right = rct::scalarmultKey(rct::H, tmp); - - CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "proof.V does not have exactly one element"); - tmp = rct::scalarmultKey(proof.V[0], zsq); - rct::addKeys(L61Right, L61Right, tmp); + for (size_t j = 0; j < M; ++j) + { + CHECK_AND_ASSERT_MES(j+2 < zpow.size(), false, "invalid zpow index"); + tmp = rct::scalarmultKey(j < proof.V.size() ? proof.V[j] : rct::identity(), zpow[j+2]); + rct::addKeys(L61Right, L61Right, tmp); + } tmp = rct::scalarmultKey(proof.T1, x); rct::addKeys(L61Right, L61Right, tmp); @@ -639,7 +921,7 @@ bool bulletproof_VERIFY(const Bulletproof &proof) PERF_TIMER_STOP(VERIFY_line_62); // Compute the number of rounds for the inner product - const size_t rounds = proof.L.size(); + const size_t rounds = logM+logN; CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds"); PERF_TIMER_START_BP(VERIFY_line_21_22); @@ -666,7 +948,7 @@ bool bulletproof_VERIFY(const Bulletproof &proof) winv[i] = invert(w[i]); PERF_TIMER_STOP(VERIFY_line_24_25_invert); - for (size_t i = 0; i < N; ++i) + for (size_t i = 0; i < MN; ++i) { // Convert the index to binary IN REVERSE and construct the scalar exponent rct::key g_scalar = proof.a; @@ -691,7 +973,9 @@ bool bulletproof_VERIFY(const Bulletproof &proof) // Adjust the scalars using the exponents from PAPER LINE 62 sc_add(g_scalar.bytes, g_scalar.bytes, z.bytes); - sc_mul(tmp.bytes, zsq.bytes, twoN[i].bytes); + CHECK_AND_ASSERT_MES(2+i/N < zpow.size(), false, "invalid zpow index"); + CHECK_AND_ASSERT_MES(i%N < twoN.size(), false, "invalid twoN index"); + sc_mul(tmp.bytes, zpow[2+i/N].bytes, twoN[i%N].bytes); sc_muladd(tmp.bytes, z.bytes, ypow.bytes, tmp.bytes); sc_mulsub(h_scalar.bytes, tmp.bytes, yinvpow.bytes, h_scalar.bytes); @@ -700,7 +984,7 @@ bool bulletproof_VERIFY(const Bulletproof &proof) rct::addKeys3(tmp, g_scalar, Gprecomp[i], h_scalar, Hprecomp[i]); rct::addKeys(inner_prod, inner_prod, tmp); - if (i != N-1) + if (i != MN-1) { sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); sc_mul(ypow.bytes, ypow.bytes, y.bytes); |