aboutsummaryrefslogtreecommitdiff
path: root/external/unbound/validator/val_sigcrypt.c
diff options
context:
space:
mode:
authorRiccardo Spagni <ric@spagni.net>2014-10-05 23:44:31 +0200
committerRiccardo Spagni <ric@spagni.net>2014-10-05 23:44:31 +0200
commit9ef094b356b4da7542c3cab898dac7e135b76903 (patch)
tree99b5876712b0b1551fc042fe75447b998e4b0fc1 /external/unbound/validator/val_sigcrypt.c
parentsplit mnemonic printout over 3 lines (diff)
downloadmonero-9ef094b356b4da7542c3cab898dac7e135b76903.tar.xz
added unbound to external deps
Diffstat (limited to '')
-rw-r--r--external/unbound/validator/val_sigcrypt.c1437
1 files changed, 1437 insertions, 0 deletions
diff --git a/external/unbound/validator/val_sigcrypt.c b/external/unbound/validator/val_sigcrypt.c
new file mode 100644
index 000000000..5a4d0f471
--- /dev/null
+++ b/external/unbound/validator/val_sigcrypt.c
@@ -0,0 +1,1437 @@
+/*
+ * validator/val_sigcrypt.c - validator signature crypto functions.
+ *
+ * Copyright (c) 2007, NLnet Labs. All rights reserved.
+ *
+ * This software is open source.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * Neither the name of the NLNET LABS nor the names of its contributors may
+ * be used to endorse or promote products derived from this software without
+ * specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
+ * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/**
+ * \file
+ *
+ * This file contains helper functions for the validator module.
+ * The functions help with signature verification and checking, the
+ * bridging between RR wireformat data and crypto calls.
+ */
+#include "config.h"
+#include "validator/val_sigcrypt.h"
+#include "validator/val_secalgo.h"
+#include "validator/validator.h"
+#include "util/data/msgreply.h"
+#include "util/data/msgparse.h"
+#include "util/data/dname.h"
+#include "util/rbtree.h"
+#include "util/module.h"
+#include "util/net_help.h"
+#include "util/regional.h"
+#include "ldns/keyraw.h"
+#include "ldns/sbuffer.h"
+#include "ldns/parseutil.h"
+#include "ldns/wire2str.h"
+
+#include <ctype.h>
+#if !defined(HAVE_SSL) && !defined(HAVE_NSS)
+#error "Need crypto library to do digital signature cryptography"
+#endif
+
+#ifdef HAVE_OPENSSL_ERR_H
+#include <openssl/err.h>
+#endif
+
+#ifdef HAVE_OPENSSL_RAND_H
+#include <openssl/rand.h>
+#endif
+
+#ifdef HAVE_OPENSSL_CONF_H
+#include <openssl/conf.h>
+#endif
+
+#ifdef HAVE_OPENSSL_ENGINE_H
+#include <openssl/engine.h>
+#endif
+
+/** return number of rrs in an rrset */
+static size_t
+rrset_get_count(struct ub_packed_rrset_key* rrset)
+{
+ struct packed_rrset_data* d = (struct packed_rrset_data*)
+ rrset->entry.data;
+ if(!d) return 0;
+ return d->count;
+}
+
+/**
+ * Get RR signature count
+ */
+static size_t
+rrset_get_sigcount(struct ub_packed_rrset_key* k)
+{
+ struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
+ return d->rrsig_count;
+}
+
+/**
+ * Get signature keytag value
+ * @param k: rrset (with signatures)
+ * @param sig_idx: signature index.
+ * @return keytag or 0 if malformed rrsig.
+ */
+static uint16_t
+rrset_get_sig_keytag(struct ub_packed_rrset_key* k, size_t sig_idx)
+{
+ uint16_t t;
+ struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
+ log_assert(sig_idx < d->rrsig_count);
+ if(d->rr_len[d->count + sig_idx] < 2+18)
+ return 0;
+ memmove(&t, d->rr_data[d->count + sig_idx]+2+16, 2);
+ return ntohs(t);
+}
+
+/**
+ * Get signature signing algorithm value
+ * @param k: rrset (with signatures)
+ * @param sig_idx: signature index.
+ * @return algo or 0 if malformed rrsig.
+ */
+static int
+rrset_get_sig_algo(struct ub_packed_rrset_key* k, size_t sig_idx)
+{
+ struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
+ log_assert(sig_idx < d->rrsig_count);
+ if(d->rr_len[d->count + sig_idx] < 2+3)
+ return 0;
+ return (int)d->rr_data[d->count + sig_idx][2+2];
+}
+
+/** get rdata pointer and size */
+static void
+rrset_get_rdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** rdata,
+ size_t* len)
+{
+ struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
+ log_assert(d && idx < (d->count + d->rrsig_count));
+ *rdata = d->rr_data[idx];
+ *len = d->rr_len[idx];
+}
+
+uint16_t
+dnskey_get_flags(struct ub_packed_rrset_key* k, size_t idx)
+{
+ uint8_t* rdata;
+ size_t len;
+ uint16_t f;
+ rrset_get_rdata(k, idx, &rdata, &len);
+ if(len < 2+2)
+ return 0;
+ memmove(&f, rdata+2, 2);
+ f = ntohs(f);
+ return f;
+}
+
+/**
+ * Get DNSKEY protocol value from rdata
+ * @param k: DNSKEY rrset.
+ * @param idx: which key.
+ * @return protocol octet value
+ */
+static int
+dnskey_get_protocol(struct ub_packed_rrset_key* k, size_t idx)
+{
+ uint8_t* rdata;
+ size_t len;
+ rrset_get_rdata(k, idx, &rdata, &len);
+ if(len < 2+4)
+ return 0;
+ return (int)rdata[2+2];
+}
+
+int
+dnskey_get_algo(struct ub_packed_rrset_key* k, size_t idx)
+{
+ uint8_t* rdata;
+ size_t len;
+ rrset_get_rdata(k, idx, &rdata, &len);
+ if(len < 2+4)
+ return 0;
+ return (int)rdata[2+3];
+}
+
+/** get public key rdata field from a dnskey RR and do some checks */
+static void
+dnskey_get_pubkey(struct ub_packed_rrset_key* k, size_t idx,
+ unsigned char** pk, unsigned int* pklen)
+{
+ uint8_t* rdata;
+ size_t len;
+ rrset_get_rdata(k, idx, &rdata, &len);
+ if(len < 2+5) {
+ *pk = NULL;
+ *pklen = 0;
+ return;
+ }
+ *pk = (unsigned char*)rdata+2+4;
+ *pklen = (unsigned)len-2-4;
+}
+
+int
+ds_get_key_algo(struct ub_packed_rrset_key* k, size_t idx)
+{
+ uint8_t* rdata;
+ size_t len;
+ rrset_get_rdata(k, idx, &rdata, &len);
+ if(len < 2+3)
+ return 0;
+ return (int)rdata[2+2];
+}
+
+int
+ds_get_digest_algo(struct ub_packed_rrset_key* k, size_t idx)
+{
+ uint8_t* rdata;
+ size_t len;
+ rrset_get_rdata(k, idx, &rdata, &len);
+ if(len < 2+4)
+ return 0;
+ return (int)rdata[2+3];
+}
+
+uint16_t
+ds_get_keytag(struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
+{
+ uint16_t t;
+ uint8_t* rdata;
+ size_t len;
+ rrset_get_rdata(ds_rrset, ds_idx, &rdata, &len);
+ if(len < 2+2)
+ return 0;
+ memmove(&t, rdata+2, 2);
+ return ntohs(t);
+}
+
+/**
+ * Return pointer to the digest in a DS RR.
+ * @param k: DS rrset.
+ * @param idx: which DS.
+ * @param digest: digest data is returned.
+ * on error, this is NULL.
+ * @param len: length of digest is returned.
+ * on error, the length is 0.
+ */
+static void
+ds_get_sigdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** digest,
+ size_t* len)
+{
+ uint8_t* rdata;
+ size_t rdlen;
+ rrset_get_rdata(k, idx, &rdata, &rdlen);
+ if(rdlen < 2+5) {
+ *digest = NULL;
+ *len = 0;
+ return;
+ }
+ *digest = rdata + 2 + 4;
+ *len = rdlen - 2 - 4;
+}
+
+/**
+ * Return size of DS digest according to its hash algorithm.
+ * @param k: DS rrset.
+ * @param idx: which DS.
+ * @return size in bytes of digest, or 0 if not supported.
+ */
+static size_t
+ds_digest_size_algo(struct ub_packed_rrset_key* k, size_t idx)
+{
+ return ds_digest_size_supported(ds_get_digest_algo(k, idx));
+}
+
+/**
+ * Create a DS digest for a DNSKEY entry.
+ *
+ * @param env: module environment. Uses scratch space.
+ * @param dnskey_rrset: DNSKEY rrset.
+ * @param dnskey_idx: index of RR in rrset.
+ * @param ds_rrset: DS rrset
+ * @param ds_idx: index of RR in DS rrset.
+ * @param digest: digest is returned in here (must be correctly sized).
+ * @return false on error.
+ */
+static int
+ds_create_dnskey_digest(struct module_env* env,
+ struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
+ struct ub_packed_rrset_key* ds_rrset, size_t ds_idx,
+ uint8_t* digest)
+{
+ sldns_buffer* b = env->scratch_buffer;
+ uint8_t* dnskey_rdata;
+ size_t dnskey_len;
+ rrset_get_rdata(dnskey_rrset, dnskey_idx, &dnskey_rdata, &dnskey_len);
+
+ /* create digest source material in buffer
+ * digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
+ * DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key. */
+ sldns_buffer_clear(b);
+ sldns_buffer_write(b, dnskey_rrset->rk.dname,
+ dnskey_rrset->rk.dname_len);
+ query_dname_tolower(sldns_buffer_begin(b));
+ sldns_buffer_write(b, dnskey_rdata+2, dnskey_len-2); /* skip rdatalen*/
+ sldns_buffer_flip(b);
+
+ return secalgo_ds_digest(ds_get_digest_algo(ds_rrset, ds_idx),
+ (unsigned char*)sldns_buffer_begin(b), sldns_buffer_limit(b),
+ (unsigned char*)digest);
+}
+
+int ds_digest_match_dnskey(struct module_env* env,
+ struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
+ struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
+{
+ uint8_t* ds; /* DS digest */
+ size_t dslen;
+ uint8_t* digest; /* generated digest */
+ size_t digestlen = ds_digest_size_algo(ds_rrset, ds_idx);
+
+ if(digestlen == 0) {
+ verbose(VERB_QUERY, "DS fail: not supported, or DS RR "
+ "format error");
+ return 0; /* not supported, or DS RR format error */
+ }
+ /* check digest length in DS with length from hash function */
+ ds_get_sigdata(ds_rrset, ds_idx, &ds, &dslen);
+ if(!ds || dslen != digestlen) {
+ verbose(VERB_QUERY, "DS fail: DS RR algo and digest do not "
+ "match each other");
+ return 0; /* DS algorithm and digest do not match */
+ }
+
+ digest = regional_alloc(env->scratch, digestlen);
+ if(!digest) {
+ verbose(VERB_QUERY, "DS fail: out of memory");
+ return 0; /* mem error */
+ }
+ if(!ds_create_dnskey_digest(env, dnskey_rrset, dnskey_idx, ds_rrset,
+ ds_idx, digest)) {
+ verbose(VERB_QUERY, "DS fail: could not calc key digest");
+ return 0; /* digest algo failed */
+ }
+ if(memcmp(digest, ds, dslen) != 0) {
+ verbose(VERB_QUERY, "DS fail: digest is different");
+ return 0; /* digest different */
+ }
+ return 1;
+}
+
+int
+ds_digest_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
+ size_t ds_idx)
+{
+ return (ds_digest_size_algo(ds_rrset, ds_idx) != 0);
+}
+
+int
+ds_key_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
+ size_t ds_idx)
+{
+ return dnskey_algo_id_is_supported(ds_get_key_algo(ds_rrset, ds_idx));
+}
+
+uint16_t
+dnskey_calc_keytag(struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx)
+{
+ uint8_t* data;
+ size_t len;
+ rrset_get_rdata(dnskey_rrset, dnskey_idx, &data, &len);
+ /* do not pass rdatalen to ldns */
+ return sldns_calc_keytag_raw(data+2, len-2);
+}
+
+int dnskey_algo_is_supported(struct ub_packed_rrset_key* dnskey_rrset,
+ size_t dnskey_idx)
+{
+ return dnskey_algo_id_is_supported(dnskey_get_algo(dnskey_rrset,
+ dnskey_idx));
+}
+
+void algo_needs_init_dnskey_add(struct algo_needs* n,
+ struct ub_packed_rrset_key* dnskey, uint8_t* sigalg)
+{
+ uint8_t algo;
+ size_t i, total = n->num;
+ size_t num = rrset_get_count(dnskey);
+
+ for(i=0; i<num; i++) {
+ algo = (uint8_t)dnskey_get_algo(dnskey, i);
+ if(!dnskey_algo_id_is_supported((int)algo))
+ continue;
+ if(n->needs[algo] == 0) {
+ n->needs[algo] = 1;
+ sigalg[total] = algo;
+ total++;
+ }
+ }
+ sigalg[total] = 0;
+ n->num = total;
+}
+
+void algo_needs_init_list(struct algo_needs* n, uint8_t* sigalg)
+{
+ uint8_t algo;
+ size_t total = 0;
+
+ memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
+ while( (algo=*sigalg++) != 0) {
+ log_assert(dnskey_algo_id_is_supported((int)algo));
+ log_assert(n->needs[algo] == 0);
+ n->needs[algo] = 1;
+ total++;
+ }
+ n->num = total;
+}
+
+void algo_needs_init_ds(struct algo_needs* n, struct ub_packed_rrset_key* ds,
+ int fav_ds_algo, uint8_t* sigalg)
+{
+ uint8_t algo;
+ size_t i, total = 0;
+ size_t num = rrset_get_count(ds);
+
+ memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
+ for(i=0; i<num; i++) {
+ if(ds_get_digest_algo(ds, i) != fav_ds_algo)
+ continue;
+ algo = (uint8_t)ds_get_key_algo(ds, i);
+ if(!dnskey_algo_id_is_supported((int)algo))
+ continue;
+ log_assert(algo != 0); /* we do not support 0 and is EOS */
+ if(n->needs[algo] == 0) {
+ n->needs[algo] = 1;
+ sigalg[total] = algo;
+ total++;
+ }
+ }
+ sigalg[total] = 0;
+ n->num = total;
+}
+
+int algo_needs_set_secure(struct algo_needs* n, uint8_t algo)
+{
+ if(n->needs[algo]) {
+ n->needs[algo] = 0;
+ n->num --;
+ if(n->num == 0) /* done! */
+ return 1;
+ }
+ return 0;
+}
+
+void algo_needs_set_bogus(struct algo_needs* n, uint8_t algo)
+{
+ if(n->needs[algo]) n->needs[algo] = 2; /* need it, but bogus */
+}
+
+size_t algo_needs_num_missing(struct algo_needs* n)
+{
+ return n->num;
+}
+
+int algo_needs_missing(struct algo_needs* n)
+{
+ int i;
+ /* first check if a needed algo was bogus - report that */
+ for(i=0; i<ALGO_NEEDS_MAX; i++)
+ if(n->needs[i] == 2)
+ return 0;
+ /* now check which algo is missing */
+ for(i=0; i<ALGO_NEEDS_MAX; i++)
+ if(n->needs[i] == 1)
+ return i;
+ return 0;
+}
+
+enum sec_status
+dnskeyset_verify_rrset(struct module_env* env, struct val_env* ve,
+ struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
+ uint8_t* sigalg, char** reason)
+{
+ enum sec_status sec;
+ size_t i, num;
+ rbtree_t* sortree = NULL;
+ /* make sure that for all DNSKEY algorithms there are valid sigs */
+ struct algo_needs needs;
+ int alg;
+
+ num = rrset_get_sigcount(rrset);
+ if(num == 0) {
+ verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
+ "signatures");
+ *reason = "no signatures";
+ return sec_status_bogus;
+ }
+
+ if(sigalg) {
+ algo_needs_init_list(&needs, sigalg);
+ if(algo_needs_num_missing(&needs) == 0) {
+ verbose(VERB_QUERY, "zone has no known algorithms");
+ *reason = "zone has no known algorithms";
+ return sec_status_insecure;
+ }
+ }
+ for(i=0; i<num; i++) {
+ sec = dnskeyset_verify_rrset_sig(env, ve, *env->now, rrset,
+ dnskey, i, &sortree, reason);
+ /* see which algorithm has been fixed up */
+ if(sec == sec_status_secure) {
+ if(!sigalg)
+ return sec; /* done! */
+ else if(algo_needs_set_secure(&needs,
+ (uint8_t)rrset_get_sig_algo(rrset, i)))
+ return sec; /* done! */
+ } else if(sigalg && sec == sec_status_bogus) {
+ algo_needs_set_bogus(&needs,
+ (uint8_t)rrset_get_sig_algo(rrset, i));
+ }
+ }
+ if(sigalg && (alg=algo_needs_missing(&needs)) != 0) {
+ verbose(VERB_ALGO, "rrset failed to verify: "
+ "no valid signatures for %d algorithms",
+ (int)algo_needs_num_missing(&needs));
+ algo_needs_reason(env, alg, reason, "no signatures");
+ } else {
+ verbose(VERB_ALGO, "rrset failed to verify: "
+ "no valid signatures");
+ }
+ return sec_status_bogus;
+}
+
+void algo_needs_reason(struct module_env* env, int alg, char** reason, char* s)
+{
+ char buf[256];
+ sldns_lookup_table *t = sldns_lookup_by_id(sldns_algorithms, alg);
+ if(t&&t->name)
+ snprintf(buf, sizeof(buf), "%s with algorithm %s", s, t->name);
+ else snprintf(buf, sizeof(buf), "%s with algorithm ALG%u", s,
+ (unsigned)alg);
+ *reason = regional_strdup(env->scratch, buf);
+ if(!*reason)
+ *reason = s;
+}
+
+enum sec_status
+dnskey_verify_rrset(struct module_env* env, struct val_env* ve,
+ struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
+ size_t dnskey_idx, char** reason)
+{
+ enum sec_status sec;
+ size_t i, num, numchecked = 0;
+ rbtree_t* sortree = NULL;
+ int buf_canon = 0;
+ uint16_t tag = dnskey_calc_keytag(dnskey, dnskey_idx);
+ int algo = dnskey_get_algo(dnskey, dnskey_idx);
+
+ num = rrset_get_sigcount(rrset);
+ if(num == 0) {
+ verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
+ "signatures");
+ *reason = "no signatures";
+ return sec_status_bogus;
+ }
+ for(i=0; i<num; i++) {
+ /* see if sig matches keytag and algo */
+ if(algo != rrset_get_sig_algo(rrset, i) ||
+ tag != rrset_get_sig_keytag(rrset, i))
+ continue;
+ buf_canon = 0;
+ sec = dnskey_verify_rrset_sig(env->scratch,
+ env->scratch_buffer, ve, *env->now, rrset,
+ dnskey, dnskey_idx, i, &sortree, &buf_canon, reason);
+ if(sec == sec_status_secure)
+ return sec;
+ numchecked ++;
+ }
+ verbose(VERB_ALGO, "rrset failed to verify: all signatures are bogus");
+ if(!numchecked) *reason = "signature missing";
+ return sec_status_bogus;
+}
+
+enum sec_status
+dnskeyset_verify_rrset_sig(struct module_env* env, struct val_env* ve,
+ time_t now, struct ub_packed_rrset_key* rrset,
+ struct ub_packed_rrset_key* dnskey, size_t sig_idx,
+ struct rbtree_t** sortree, char** reason)
+{
+ /* find matching keys and check them */
+ enum sec_status sec = sec_status_bogus;
+ uint16_t tag = rrset_get_sig_keytag(rrset, sig_idx);
+ int algo = rrset_get_sig_algo(rrset, sig_idx);
+ size_t i, num = rrset_get_count(dnskey);
+ size_t numchecked = 0;
+ int buf_canon = 0;
+ verbose(VERB_ALGO, "verify sig %d %d", (int)tag, algo);
+ if(!dnskey_algo_id_is_supported(algo)) {
+ verbose(VERB_QUERY, "verify sig: unknown algorithm");
+ return sec_status_insecure;
+ }
+
+ for(i=0; i<num; i++) {
+ /* see if key matches keytag and algo */
+ if(algo != dnskey_get_algo(dnskey, i) ||
+ tag != dnskey_calc_keytag(dnskey, i))
+ continue;
+ numchecked ++;
+
+ /* see if key verifies */
+ sec = dnskey_verify_rrset_sig(env->scratch,
+ env->scratch_buffer, ve, now, rrset, dnskey, i,
+ sig_idx, sortree, &buf_canon, reason);
+ if(sec == sec_status_secure)
+ return sec;
+ }
+ if(numchecked == 0) {
+ *reason = "signatures from unknown keys";
+ verbose(VERB_QUERY, "verify: could not find appropriate key");
+ return sec_status_bogus;
+ }
+ return sec_status_bogus;
+}
+
+/**
+ * RR entries in a canonical sorted tree of RRs
+ */
+struct canon_rr {
+ /** rbtree node, key is this structure */
+ rbnode_t node;
+ /** rrset the RR is in */
+ struct ub_packed_rrset_key* rrset;
+ /** which RR in the rrset */
+ size_t rr_idx;
+};
+
+/**
+ * Compare two RR for canonical order, in a field-style sweep.
+ * @param d: rrset data
+ * @param desc: ldns wireformat descriptor.
+ * @param i: first RR to compare
+ * @param j: first RR to compare
+ * @return comparison code.
+ */
+static int
+canonical_compare_byfield(struct packed_rrset_data* d,
+ const sldns_rr_descriptor* desc, size_t i, size_t j)
+{
+ /* sweep across rdata, keep track of some state:
+ * which rr field, and bytes left in field.
+ * current position in rdata, length left.
+ * are we in a dname, length left in a label.
+ */
+ int wfi = -1; /* current wireformat rdata field (rdf) */
+ int wfj = -1;
+ uint8_t* di = d->rr_data[i]+2; /* ptr to current rdata byte */
+ uint8_t* dj = d->rr_data[j]+2;
+ size_t ilen = d->rr_len[i]-2; /* length left in rdata */
+ size_t jlen = d->rr_len[j]-2;
+ int dname_i = 0; /* true if these bytes are part of a name */
+ int dname_j = 0;
+ size_t lablen_i = 0; /* 0 for label length byte,for first byte of rdf*/
+ size_t lablen_j = 0; /* otherwise remaining length of rdf or label */
+ int dname_num_i = (int)desc->_dname_count; /* decreased at root label */
+ int dname_num_j = (int)desc->_dname_count;
+
+ /* loop while there are rdata bytes available for both rrs,
+ * and still some lowercasing needs to be done; either the dnames
+ * have not been reached yet, or they are currently being processed */
+ while(ilen > 0 && jlen > 0 && (dname_num_i > 0 || dname_num_j > 0)) {
+ /* compare these two bytes */
+ /* lowercase if in a dname and not a label length byte */
+ if( ((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
+ != ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj)
+ ) {
+ if(((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
+ < ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj))
+ return -1;
+ return 1;
+ }
+ ilen--;
+ jlen--;
+ /* bytes are equal */
+
+ /* advance field i */
+ /* lablen 0 means that this byte is the first byte of the
+ * next rdata field; inspect this rdata field and setup
+ * to process the rest of this rdata field.
+ * The reason to first read the byte, then setup the rdf,
+ * is that we are then sure the byte is available and short
+ * rdata is handled gracefully (even if it is a formerr). */
+ if(lablen_i == 0) {
+ if(dname_i) {
+ /* scan this dname label */
+ /* capture length to lowercase */
+ lablen_i = (size_t)*di;
+ if(lablen_i == 0) {
+ /* end root label */
+ dname_i = 0;
+ dname_num_i--;
+ /* if dname num is 0, then the
+ * remainder is binary only */
+ if(dname_num_i == 0)
+ lablen_i = ilen;
+ }
+ } else {
+ /* scan this rdata field */
+ wfi++;
+ if(desc->_wireformat[wfi]
+ == LDNS_RDF_TYPE_DNAME) {
+ dname_i = 1;
+ lablen_i = (size_t)*di;
+ if(lablen_i == 0) {
+ dname_i = 0;
+ dname_num_i--;
+ if(dname_num_i == 0)
+ lablen_i = ilen;
+ }
+ } else if(desc->_wireformat[wfi]
+ == LDNS_RDF_TYPE_STR)
+ lablen_i = (size_t)*di;
+ else lablen_i = get_rdf_size(
+ desc->_wireformat[wfi]) - 1;
+ }
+ } else lablen_i--;
+
+ /* advance field j; same as for i */
+ if(lablen_j == 0) {
+ if(dname_j) {
+ lablen_j = (size_t)*dj;
+ if(lablen_j == 0) {
+ dname_j = 0;
+ dname_num_j--;
+ if(dname_num_j == 0)
+ lablen_j = jlen;
+ }
+ } else {
+ wfj++;
+ if(desc->_wireformat[wfj]
+ == LDNS_RDF_TYPE_DNAME) {
+ dname_j = 1;
+ lablen_j = (size_t)*dj;
+ if(lablen_j == 0) {
+ dname_j = 0;
+ dname_num_j--;
+ if(dname_num_j == 0)
+ lablen_j = jlen;
+ }
+ } else if(desc->_wireformat[wfj]
+ == LDNS_RDF_TYPE_STR)
+ lablen_j = (size_t)*dj;
+ else lablen_j = get_rdf_size(
+ desc->_wireformat[wfj]) - 1;
+ }
+ } else lablen_j--;
+ di++;
+ dj++;
+ }
+ /* end of the loop; because we advanced byte by byte; now we have
+ * that the rdata has ended, or that there is a binary remainder */
+ /* shortest first */
+ if(ilen == 0 && jlen == 0)
+ return 0;
+ if(ilen == 0)
+ return -1;
+ if(jlen == 0)
+ return 1;
+ /* binary remainder, capture comparison in wfi variable */
+ if((wfi = memcmp(di, dj, (ilen<jlen)?ilen:jlen)) != 0)
+ return wfi;
+ if(ilen < jlen)
+ return -1;
+ if(jlen < ilen)
+ return 1;
+ return 0;
+}
+
+/**
+ * Compare two RRs in the same RRset and determine their relative
+ * canonical order.
+ * @param rrset: the rrset in which to perform compares.
+ * @param i: first RR to compare
+ * @param j: first RR to compare
+ * @return 0 if RR i== RR j, -1 if <, +1 if >.
+ */
+static int
+canonical_compare(struct ub_packed_rrset_key* rrset, size_t i, size_t j)
+{
+ struct packed_rrset_data* d = (struct packed_rrset_data*)
+ rrset->entry.data;
+ const sldns_rr_descriptor* desc;
+ uint16_t type = ntohs(rrset->rk.type);
+ size_t minlen;
+ int c;
+
+ if(i==j)
+ return 0;
+ /* in case rdata-len is to be compared for canonical order
+ c = memcmp(d->rr_data[i], d->rr_data[j], 2);
+ if(c != 0)
+ return c; */
+
+ switch(type) {
+ /* These RR types have only a name as RDATA.
+ * This name has to be canonicalized.*/
+ case LDNS_RR_TYPE_NS:
+ case LDNS_RR_TYPE_MD:
+ case LDNS_RR_TYPE_MF:
+ case LDNS_RR_TYPE_CNAME:
+ case LDNS_RR_TYPE_MB:
+ case LDNS_RR_TYPE_MG:
+ case LDNS_RR_TYPE_MR:
+ case LDNS_RR_TYPE_PTR:
+ case LDNS_RR_TYPE_DNAME:
+ /* the wireread function has already checked these
+ * dname's for correctness, and this double checks */
+ if(!dname_valid(d->rr_data[i]+2, d->rr_len[i]-2) ||
+ !dname_valid(d->rr_data[j]+2, d->rr_len[j]-2))
+ return 0;
+ return query_dname_compare(d->rr_data[i]+2,
+ d->rr_data[j]+2);
+
+ /* These RR types have STR and fixed size rdata fields
+ * before one or more name fields that need canonicalizing,
+ * and after that a byte-for byte remainder can be compared.
+ */
+ /* type starts with the name; remainder is binary compared */
+ case LDNS_RR_TYPE_NXT:
+ /* use rdata field formats */
+ case LDNS_RR_TYPE_MINFO:
+ case LDNS_RR_TYPE_RP:
+ case LDNS_RR_TYPE_SOA:
+ case LDNS_RR_TYPE_RT:
+ case LDNS_RR_TYPE_AFSDB:
+ case LDNS_RR_TYPE_KX:
+ case LDNS_RR_TYPE_MX:
+ case LDNS_RR_TYPE_SIG:
+ /* RRSIG signer name has to be downcased */
+ case LDNS_RR_TYPE_RRSIG:
+ case LDNS_RR_TYPE_PX:
+ case LDNS_RR_TYPE_NAPTR:
+ case LDNS_RR_TYPE_SRV:
+ desc = sldns_rr_descript(type);
+ log_assert(desc);
+ /* this holds for the types that need canonicalizing */
+ log_assert(desc->_minimum == desc->_maximum);
+ return canonical_compare_byfield(d, desc, i, j);
+
+ case LDNS_RR_TYPE_HINFO: /* no longer downcased */
+ case LDNS_RR_TYPE_NSEC:
+ default:
+ /* For unknown RR types, or types not listed above,
+ * no canonicalization is needed, do binary compare */
+ /* byte for byte compare, equal means shortest first*/
+ minlen = d->rr_len[i]-2;
+ if(minlen > d->rr_len[j]-2)
+ minlen = d->rr_len[j]-2;
+ c = memcmp(d->rr_data[i]+2, d->rr_data[j]+2, minlen);
+ if(c!=0)
+ return c;
+ /* rdata equal, shortest is first */
+ if(d->rr_len[i] < d->rr_len[j])
+ return -1;
+ if(d->rr_len[i] > d->rr_len[j])
+ return 1;
+ /* rdata equal, length equal */
+ break;
+ }
+ return 0;
+}
+
+int
+canonical_tree_compare(const void* k1, const void* k2)
+{
+ struct canon_rr* r1 = (struct canon_rr*)k1;
+ struct canon_rr* r2 = (struct canon_rr*)k2;
+ log_assert(r1->rrset == r2->rrset);
+ return canonical_compare(r1->rrset, r1->rr_idx, r2->rr_idx);
+}
+
+/**
+ * Sort RRs for rrset in canonical order.
+ * Does not actually canonicalize the RR rdatas.
+ * Does not touch rrsigs.
+ * @param rrset: to sort.
+ * @param d: rrset data.
+ * @param sortree: tree to sort into.
+ * @param rrs: rr storage.
+ */
+static void
+canonical_sort(struct ub_packed_rrset_key* rrset, struct packed_rrset_data* d,
+ rbtree_t* sortree, struct canon_rr* rrs)
+{
+ size_t i;
+ /* insert into rbtree to sort and detect duplicates */
+ for(i=0; i<d->count; i++) {
+ rrs[i].node.key = &rrs[i];
+ rrs[i].rrset = rrset;
+ rrs[i].rr_idx = i;
+ if(!rbtree_insert(sortree, &rrs[i].node)) {
+ /* this was a duplicate */
+ }
+ }
+}
+
+/**
+ * Inser canonical owner name into buffer.
+ * @param buf: buffer to insert into at current position.
+ * @param k: rrset with its owner name.
+ * @param sig: signature with signer name and label count.
+ * must be length checked, at least 18 bytes long.
+ * @param can_owner: position in buffer returned for future use.
+ * @param can_owner_len: length of canonical owner name.
+ */
+static void
+insert_can_owner(sldns_buffer* buf, struct ub_packed_rrset_key* k,
+ uint8_t* sig, uint8_t** can_owner, size_t* can_owner_len)
+{
+ int rrsig_labels = (int)sig[3];
+ int fqdn_labels = dname_signame_label_count(k->rk.dname);
+ *can_owner = sldns_buffer_current(buf);
+ if(rrsig_labels == fqdn_labels) {
+ /* no change */
+ sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len);
+ query_dname_tolower(*can_owner);
+ *can_owner_len = k->rk.dname_len;
+ return;
+ }
+ log_assert(rrsig_labels < fqdn_labels);
+ /* *. | fqdn(rightmost rrsig_labels) */
+ if(rrsig_labels < fqdn_labels) {
+ int i;
+ uint8_t* nm = k->rk.dname;
+ size_t len = k->rk.dname_len;
+ /* so skip fqdn_labels-rrsig_labels */
+ for(i=0; i<fqdn_labels-rrsig_labels; i++) {
+ dname_remove_label(&nm, &len);
+ }
+ *can_owner_len = len+2;
+ sldns_buffer_write(buf, (uint8_t*)"\001*", 2);
+ sldns_buffer_write(buf, nm, len);
+ query_dname_tolower(*can_owner);
+ }
+}
+
+/**
+ * Canonicalize Rdata in buffer.
+ * @param buf: buffer at position just after the rdata.
+ * @param rrset: rrset with type.
+ * @param len: length of the rdata (including rdatalen uint16).
+ */
+static void
+canonicalize_rdata(sldns_buffer* buf, struct ub_packed_rrset_key* rrset,
+ size_t len)
+{
+ uint8_t* datstart = sldns_buffer_current(buf)-len+2;
+ switch(ntohs(rrset->rk.type)) {
+ case LDNS_RR_TYPE_NXT:
+ case LDNS_RR_TYPE_NS:
+ case LDNS_RR_TYPE_MD:
+ case LDNS_RR_TYPE_MF:
+ case LDNS_RR_TYPE_CNAME:
+ case LDNS_RR_TYPE_MB:
+ case LDNS_RR_TYPE_MG:
+ case LDNS_RR_TYPE_MR:
+ case LDNS_RR_TYPE_PTR:
+ case LDNS_RR_TYPE_DNAME:
+ /* type only has a single argument, the name */
+ query_dname_tolower(datstart);
+ return;
+ case LDNS_RR_TYPE_MINFO:
+ case LDNS_RR_TYPE_RP:
+ case LDNS_RR_TYPE_SOA:
+ /* two names after another */
+ query_dname_tolower(datstart);
+ query_dname_tolower(datstart +
+ dname_valid(datstart, len-2));
+ return;
+ case LDNS_RR_TYPE_RT:
+ case LDNS_RR_TYPE_AFSDB:
+ case LDNS_RR_TYPE_KX:
+ case LDNS_RR_TYPE_MX:
+ /* skip fixed part */
+ if(len < 2+2+1) /* rdlen, skiplen, 1byteroot */
+ return;
+ datstart += 2;
+ query_dname_tolower(datstart);
+ return;
+ case LDNS_RR_TYPE_SIG:
+ /* downcase the RRSIG, compat with BIND (kept it from SIG) */
+ case LDNS_RR_TYPE_RRSIG:
+ /* skip fixed part */
+ if(len < 2+18+1)
+ return;
+ datstart += 18;
+ query_dname_tolower(datstart);
+ return;
+ case LDNS_RR_TYPE_PX:
+ /* skip, then two names after another */
+ if(len < 2+2+1)
+ return;
+ datstart += 2;
+ query_dname_tolower(datstart);
+ query_dname_tolower(datstart +
+ dname_valid(datstart, len-2-2));
+ return;
+ case LDNS_RR_TYPE_NAPTR:
+ if(len < 2+4)
+ return;
+ len -= 2+4;
+ datstart += 4;
+ if(len < (size_t)datstart[0]+1) /* skip text field */
+ return;
+ len -= (size_t)datstart[0]+1;
+ datstart += (size_t)datstart[0]+1;
+ if(len < (size_t)datstart[0]+1) /* skip text field */
+ return;
+ len -= (size_t)datstart[0]+1;
+ datstart += (size_t)datstart[0]+1;
+ if(len < (size_t)datstart[0]+1) /* skip text field */
+ return;
+ len -= (size_t)datstart[0]+1;
+ datstart += (size_t)datstart[0]+1;
+ if(len < 1) /* check name is at least 1 byte*/
+ return;
+ query_dname_tolower(datstart);
+ return;
+ case LDNS_RR_TYPE_SRV:
+ /* skip fixed part */
+ if(len < 2+6+1)
+ return;
+ datstart += 6;
+ query_dname_tolower(datstart);
+ return;
+
+ /* do not canonicalize NSEC rdata name, compat with
+ * from bind 9.4 signer, where it does not do so */
+ case LDNS_RR_TYPE_NSEC: /* type starts with the name */
+ case LDNS_RR_TYPE_HINFO: /* not downcased */
+ /* A6 not supported */
+ default:
+ /* nothing to do for unknown types */
+ return;
+ }
+}
+
+int rrset_canonical_equal(struct regional* region,
+ struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
+{
+ struct rbtree_t sortree1, sortree2;
+ struct canon_rr *rrs1, *rrs2, *p1, *p2;
+ struct packed_rrset_data* d1=(struct packed_rrset_data*)k1->entry.data;
+ struct packed_rrset_data* d2=(struct packed_rrset_data*)k2->entry.data;
+ struct ub_packed_rrset_key fk;
+ struct packed_rrset_data fd;
+ size_t flen[2];
+ uint8_t* fdata[2];
+
+ /* basic compare */
+ if(k1->rk.dname_len != k2->rk.dname_len ||
+ k1->rk.flags != k2->rk.flags ||
+ k1->rk.type != k2->rk.type ||
+ k1->rk.rrset_class != k2->rk.rrset_class ||
+ query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
+ return 0;
+ if(d1->ttl != d2->ttl ||
+ d1->count != d2->count ||
+ d1->rrsig_count != d2->rrsig_count ||
+ d1->trust != d2->trust ||
+ d1->security != d2->security)
+ return 0;
+
+ /* init */
+ memset(&fk, 0, sizeof(fk));
+ memset(&fd, 0, sizeof(fd));
+ fk.entry.data = &fd;
+ fd.count = 2;
+ fd.rr_len = flen;
+ fd.rr_data = fdata;
+ rbtree_init(&sortree1, &canonical_tree_compare);
+ rbtree_init(&sortree2, &canonical_tree_compare);
+ rrs1 = regional_alloc(region, sizeof(struct canon_rr)*d1->count);
+ rrs2 = regional_alloc(region, sizeof(struct canon_rr)*d2->count);
+ if(!rrs1 || !rrs2) return 1; /* alloc failure */
+
+ /* sort */
+ canonical_sort(k1, d1, &sortree1, rrs1);
+ canonical_sort(k2, d2, &sortree2, rrs2);
+
+ /* compare canonical-sorted RRs for canonical-equality */
+ if(sortree1.count != sortree2.count)
+ return 0;
+ p1 = (struct canon_rr*)rbtree_first(&sortree1);
+ p2 = (struct canon_rr*)rbtree_first(&sortree2);
+ while(p1 != (struct canon_rr*)RBTREE_NULL &&
+ p2 != (struct canon_rr*)RBTREE_NULL) {
+ flen[0] = d1->rr_len[p1->rr_idx];
+ flen[1] = d2->rr_len[p2->rr_idx];
+ fdata[0] = d1->rr_data[p1->rr_idx];
+ fdata[1] = d2->rr_data[p2->rr_idx];
+
+ if(canonical_compare(&fk, 0, 1) != 0)
+ return 0;
+ p1 = (struct canon_rr*)rbtree_next(&p1->node);
+ p2 = (struct canon_rr*)rbtree_next(&p2->node);
+ }
+ return 1;
+}
+
+/**
+ * Create canonical form of rrset in the scratch buffer.
+ * @param region: temporary region.
+ * @param buf: the buffer to use.
+ * @param k: the rrset to insert.
+ * @param sig: RRSIG rdata to include.
+ * @param siglen: RRSIG rdata len excluding signature field, but inclusive
+ * signer name length.
+ * @param sortree: if NULL is passed a new sorted rrset tree is built.
+ * Otherwise it is reused.
+ * @return false on alloc error.
+ */
+static int
+rrset_canonical(struct regional* region, sldns_buffer* buf,
+ struct ub_packed_rrset_key* k, uint8_t* sig, size_t siglen,
+ struct rbtree_t** sortree)
+{
+ struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
+ uint8_t* can_owner = NULL;
+ size_t can_owner_len = 0;
+ struct canon_rr* walk;
+ struct canon_rr* rrs;
+
+ if(!*sortree) {
+ *sortree = (struct rbtree_t*)regional_alloc(region,
+ sizeof(rbtree_t));
+ if(!*sortree)
+ return 0;
+ rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count);
+ if(!rrs) {
+ *sortree = NULL;
+ return 0;
+ }
+ rbtree_init(*sortree, &canonical_tree_compare);
+ canonical_sort(k, d, *sortree, rrs);
+ }
+
+ sldns_buffer_clear(buf);
+ sldns_buffer_write(buf, sig, siglen);
+ /* canonicalize signer name */
+ query_dname_tolower(sldns_buffer_begin(buf)+18);
+ RBTREE_FOR(walk, struct canon_rr*, (*sortree)) {
+ /* see if there is enough space left in the buffer */
+ if(sldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4
+ + d->rr_len[walk->rr_idx]) {
+ log_err("verify: failed to canonicalize, "
+ "rrset too big");
+ return 0;
+ }
+ /* determine canonical owner name */
+ if(can_owner)
+ sldns_buffer_write(buf, can_owner, can_owner_len);
+ else insert_can_owner(buf, k, sig, &can_owner,
+ &can_owner_len);
+ sldns_buffer_write(buf, &k->rk.type, 2);
+ sldns_buffer_write(buf, &k->rk.rrset_class, 2);
+ sldns_buffer_write(buf, sig+4, 4);
+ sldns_buffer_write(buf, d->rr_data[walk->rr_idx],
+ d->rr_len[walk->rr_idx]);
+ canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]);
+ }
+ sldns_buffer_flip(buf);
+ return 1;
+}
+
+/** pretty print rrsig error with dates */
+static void
+sigdate_error(const char* str, int32_t expi, int32_t incep, int32_t now)
+{
+ struct tm tm;
+ char expi_buf[16];
+ char incep_buf[16];
+ char now_buf[16];
+ time_t te, ti, tn;
+
+ if(verbosity < VERB_QUERY)
+ return;
+ te = (time_t)expi;
+ ti = (time_t)incep;
+ tn = (time_t)now;
+ memset(&tm, 0, sizeof(tm));
+ if(gmtime_r(&te, &tm) && strftime(expi_buf, 15, "%Y%m%d%H%M%S", &tm)
+ &&gmtime_r(&ti, &tm) && strftime(incep_buf, 15, "%Y%m%d%H%M%S", &tm)
+ &&gmtime_r(&tn, &tm) && strftime(now_buf, 15, "%Y%m%d%H%M%S", &tm)) {
+ log_info("%s expi=%s incep=%s now=%s", str, expi_buf,
+ incep_buf, now_buf);
+ } else
+ log_info("%s expi=%u incep=%u now=%u", str, (unsigned)expi,
+ (unsigned)incep, (unsigned)now);
+}
+
+/** check rrsig dates */
+static int
+check_dates(struct val_env* ve, uint32_t unow,
+ uint8_t* expi_p, uint8_t* incep_p, char** reason)
+{
+ /* read out the dates */
+ int32_t expi, incep, now;
+ memmove(&expi, expi_p, sizeof(expi));
+ memmove(&incep, incep_p, sizeof(incep));
+ expi = ntohl(expi);
+ incep = ntohl(incep);
+
+ /* get current date */
+ if(ve->date_override) {
+ if(ve->date_override == -1) {
+ verbose(VERB_ALGO, "date override: ignore date");
+ return 1;
+ }
+ now = ve->date_override;
+ verbose(VERB_ALGO, "date override option %d", (int)now);
+ } else now = (int32_t)unow;
+
+ /* check them */
+ if(incep - expi > 0) {
+ sigdate_error("verify: inception after expiration, "
+ "signature bad", expi, incep, now);
+ *reason = "signature inception after expiration";
+ return 0;
+ }
+ if(incep - now > 0) {
+ /* within skew ? (calc here to avoid calculation normally) */
+ int32_t skew = (expi-incep)/10;
+ if(skew < ve->skew_min) skew = ve->skew_min;
+ if(skew > ve->skew_max) skew = ve->skew_max;
+ if(incep - now > skew) {
+ sigdate_error("verify: signature bad, current time is"
+ " before inception date", expi, incep, now);
+ *reason = "signature before inception date";
+ return 0;
+ }
+ sigdate_error("verify warning suspicious signature inception "
+ " or bad local clock", expi, incep, now);
+ }
+ if(now - expi > 0) {
+ int32_t skew = (expi-incep)/10;
+ if(skew < ve->skew_min) skew = ve->skew_min;
+ if(skew > ve->skew_max) skew = ve->skew_max;
+ if(now - expi > skew) {
+ sigdate_error("verify: signature expired", expi,
+ incep, now);
+ *reason = "signature expired";
+ return 0;
+ }
+ sigdate_error("verify warning suspicious signature expiration "
+ " or bad local clock", expi, incep, now);
+ }
+ return 1;
+}
+
+/** adjust rrset TTL for verified rrset, compare to original TTL and expi */
+static void
+adjust_ttl(struct val_env* ve, uint32_t unow,
+ struct ub_packed_rrset_key* rrset, uint8_t* orig_p,
+ uint8_t* expi_p, uint8_t* incep_p)
+{
+ struct packed_rrset_data* d =
+ (struct packed_rrset_data*)rrset->entry.data;
+ /* read out the dates */
+ int32_t origttl, expittl, expi, incep, now;
+ memmove(&origttl, orig_p, sizeof(origttl));
+ memmove(&expi, expi_p, sizeof(expi));
+ memmove(&incep, incep_p, sizeof(incep));
+ expi = ntohl(expi);
+ incep = ntohl(incep);
+ origttl = ntohl(origttl);
+
+ /* get current date */
+ if(ve->date_override) {
+ now = ve->date_override;
+ } else now = (int32_t)unow;
+ expittl = expi - now;
+
+ /* so now:
+ * d->ttl: rrset ttl read from message or cache. May be reduced
+ * origttl: original TTL from signature, authoritative TTL max.
+ * expittl: TTL until the signature expires.
+ *
+ * Use the smallest of these.
+ */
+ if(d->ttl > (time_t)origttl) {
+ verbose(VERB_QUERY, "rrset TTL larger than original TTL,"
+ " adjusting TTL downwards");
+ d->ttl = origttl;
+ }
+ if(expittl > 0 && d->ttl > (time_t)expittl) {
+ verbose(VERB_ALGO, "rrset TTL larger than sig expiration ttl,"
+ " adjusting TTL downwards");
+ d->ttl = expittl;
+ }
+}
+
+enum sec_status
+dnskey_verify_rrset_sig(struct regional* region, sldns_buffer* buf,
+ struct val_env* ve, time_t now,
+ struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
+ size_t dnskey_idx, size_t sig_idx,
+ struct rbtree_t** sortree, int* buf_canon, char** reason)
+{
+ enum sec_status sec;
+ uint8_t* sig; /* RRSIG rdata */
+ size_t siglen;
+ size_t rrnum = rrset_get_count(rrset);
+ uint8_t* signer; /* rrsig signer name */
+ size_t signer_len;
+ unsigned char* sigblock; /* signature rdata field */
+ unsigned int sigblock_len;
+ uint16_t ktag; /* DNSKEY key tag */
+ unsigned char* key; /* public key rdata field */
+ unsigned int keylen;
+ rrset_get_rdata(rrset, rrnum + sig_idx, &sig, &siglen);
+ /* min length of rdatalen, fixed rrsig, root signer, 1 byte sig */
+ if(siglen < 2+20) {
+ verbose(VERB_QUERY, "verify: signature too short");
+ *reason = "signature too short";
+ return sec_status_bogus;
+ }
+
+ if(!(dnskey_get_flags(dnskey, dnskey_idx) & DNSKEY_BIT_ZSK)) {
+ verbose(VERB_QUERY, "verify: dnskey without ZSK flag");
+ *reason = "dnskey without ZSK flag";
+ return sec_status_bogus;
+ }
+
+ if(dnskey_get_protocol(dnskey, dnskey_idx) != LDNS_DNSSEC_KEYPROTO) {
+ /* RFC 4034 says DNSKEY PROTOCOL MUST be 3 */
+ verbose(VERB_QUERY, "verify: dnskey has wrong key protocol");
+ *reason = "dnskey has wrong protocolnumber";
+ return sec_status_bogus;
+ }
+
+ /* verify as many fields in rrsig as possible */
+ signer = sig+2+18;
+ signer_len = dname_valid(signer, siglen-2-18);
+ if(!signer_len) {
+ verbose(VERB_QUERY, "verify: malformed signer name");
+ *reason = "signer name malformed";
+ return sec_status_bogus; /* signer name invalid */
+ }
+ if(!dname_subdomain_c(rrset->rk.dname, signer)) {
+ verbose(VERB_QUERY, "verify: signer name is off-tree");
+ *reason = "signer name off-tree";
+ return sec_status_bogus; /* signer name offtree */
+ }
+ sigblock = (unsigned char*)signer+signer_len;
+ if(siglen < 2+18+signer_len+1) {
+ verbose(VERB_QUERY, "verify: too short, no signature data");
+ *reason = "signature too short, no signature data";
+ return sec_status_bogus; /* sig rdf is < 1 byte */
+ }
+ sigblock_len = (unsigned int)(siglen - 2 - 18 - signer_len);
+
+ /* verify key dname == sig signer name */
+ if(query_dname_compare(signer, dnskey->rk.dname) != 0) {
+ verbose(VERB_QUERY, "verify: wrong key for rrsig");
+ log_nametypeclass(VERB_QUERY, "RRSIG signername is",
+ signer, 0, 0);
+ log_nametypeclass(VERB_QUERY, "the key name is",
+ dnskey->rk.dname, 0, 0);
+ *reason = "signer name mismatches key name";
+ return sec_status_bogus;
+ }
+
+ /* verify covered type */
+ /* memcmp works because type is in network format for rrset */
+ if(memcmp(sig+2, &rrset->rk.type, 2) != 0) {
+ verbose(VERB_QUERY, "verify: wrong type covered");
+ *reason = "signature covers wrong type";
+ return sec_status_bogus;
+ }
+ /* verify keytag and sig algo (possibly again) */
+ if((int)sig[2+2] != dnskey_get_algo(dnskey, dnskey_idx)) {
+ verbose(VERB_QUERY, "verify: wrong algorithm");
+ *reason = "signature has wrong algorithm";
+ return sec_status_bogus;
+ }
+ ktag = htons(dnskey_calc_keytag(dnskey, dnskey_idx));
+ if(memcmp(sig+2+16, &ktag, 2) != 0) {
+ verbose(VERB_QUERY, "verify: wrong keytag");
+ *reason = "signature has wrong keytag";
+ return sec_status_bogus;
+ }
+
+ /* verify labels is in a valid range */
+ if((int)sig[2+3] > dname_signame_label_count(rrset->rk.dname)) {
+ verbose(VERB_QUERY, "verify: labelcount out of range");
+ *reason = "signature labelcount out of range";
+ return sec_status_bogus;
+ }
+
+ /* original ttl, always ok */
+
+ if(!*buf_canon) {
+ /* create rrset canonical format in buffer, ready for
+ * signature */
+ if(!rrset_canonical(region, buf, rrset, sig+2,
+ 18 + signer_len, sortree)) {
+ log_err("verify: failed due to alloc error");
+ return sec_status_unchecked;
+ }
+ *buf_canon = 1;
+ }
+
+ /* check that dnskey is available */
+ dnskey_get_pubkey(dnskey, dnskey_idx, &key, &keylen);
+ if(!key) {
+ verbose(VERB_QUERY, "verify: short DNSKEY RR");
+ return sec_status_unchecked;
+ }
+
+ /* verify */
+ sec = verify_canonrrset(buf, (int)sig[2+2],
+ sigblock, sigblock_len, key, keylen, reason);
+
+ if(sec == sec_status_secure) {
+ /* check if TTL is too high - reduce if so */
+ adjust_ttl(ve, now, rrset, sig+2+4, sig+2+8, sig+2+12);
+
+ /* verify inception, expiration dates
+ * Do this last so that if you ignore expired-sigs the
+ * rest is sure to be OK. */
+ if(!check_dates(ve, now, sig+2+8, sig+2+12, reason)) {
+ return sec_status_bogus;
+ }
+ }
+
+ return sec;
+}