diff options
author | Riccardo Spagni <ric@spagni.net> | 2019-05-07 17:31:45 +0200 |
---|---|---|
committer | Riccardo Spagni <ric@spagni.net> | 2019-05-07 17:31:45 +0200 |
commit | 2d04b0e50089639e471312c580a81c5e378e8880 (patch) | |
tree | 7692fc200a1c7a89c9c7ea5fbf6a7aacb91eb070 /contrib/epee/include/rolling_median.h | |
parent | Merge pull request #5496 (diff) | |
parent | blockchain: keep a rolling long term block weight median (diff) | |
download | monero-2d04b0e50089639e471312c580a81c5e378e8880.tar.xz |
Merge pull request #5499
a4c4a2d8 blockchain: keep a rolling long term block weight median (moneromooo-monero)
Diffstat (limited to 'contrib/epee/include/rolling_median.h')
-rw-r--r-- | contrib/epee/include/rolling_median.h | 236 |
1 files changed, 236 insertions, 0 deletions
diff --git a/contrib/epee/include/rolling_median.h b/contrib/epee/include/rolling_median.h new file mode 100644 index 000000000..8b5a82a84 --- /dev/null +++ b/contrib/epee/include/rolling_median.h @@ -0,0 +1,236 @@ +// Copyright (c) 2019, The Monero Project +// +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without modification, are +// permitted provided that the following conditions are met: +// +// 1. Redistributions of source code must retain the above copyright notice, this list of +// conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright notice, this list +// of conditions and the following disclaimer in the documentation and/or other +// materials provided with the distribution. +// +// 3. Neither the name of the copyright holder nor the names of its contributors may be +// used to endorse or promote products derived from this software without specific +// prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY +// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL +// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF +// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Adapted from source by AShelly: +// Copyright (c) 2011 ashelly.myopenid.com, licenced under the MIT licence +// https://stackoverflow.com/questions/5527437/rolling-median-in-c-turlach-implementation +// https://stackoverflow.com/questions/1309263/rolling-median-algorithm-in-c +// https://ideone.com/XPbl6 + +#pragma once + +#include <stdlib.h> +#include <stdint.h> + +namespace epee +{ +namespace misc_utils +{ + +template<typename Item> +struct rolling_median_t +{ +private: + Item* data; //circular queue of values + int* pos; //index into `heap` for each value + int* heap; //max/median/min heap holding indexes into `data`. + int N; //allocated size. + int idx; //position in circular queue + int minCt; //count of items in min heap + int maxCt; //count of items in max heap + int sz; //count of items in heap + +private: + + //returns true if heap[i] < heap[j] + bool mmless(int i, int j) const + { + return data[heap[i]] < data[heap[j]]; + } + + //swaps items i&j in heap, maintains indexes + bool mmexchange(int i, int j) + { + const int t = heap[i]; + heap[i] = heap[j]; + heap[j] = t; + pos[heap[i]] = i; + pos[heap[j]] = j; + return 1; + } + + //swaps items i&j if i<j; returns true if swapped + bool mmCmpExch(int i, int j) + { + return mmless(i, j) && mmexchange(i, j); + } + + //maintains minheap property for all items below i. + void minSortDown(int i) + { + for (i *= 2; i <= minCt; i *= 2) + { + if (i < minCt && mmless(i + 1, i)) + ++i; + if (!mmCmpExch(i, i / 2)) + break; + } + } + + //maintains maxheap property for all items below i. (negative indexes) + void maxSortDown(int i) + { + for (i *= 2; i >= -maxCt; i *= 2) + { + if (i > -maxCt && mmless(i, i - 1)) + --i; + if (!mmCmpExch(i / 2, i)) + break; + } + } + + //maintains minheap property for all items above i, including median + //returns true if median changed + bool minSortUp(int i) + { + while (i > 0 && mmCmpExch(i, i / 2)) + i /= 2; + return i == 0; + } + + //maintains maxheap property for all items above i, including median + //returns true if median changed + bool maxSortUp(int i) + { + while (i < 0 && mmCmpExch(i / 2, i)) + i /= 2; + return i == 0; + } + +protected: + rolling_median_t &operator=(const rolling_median_t&) = delete; + rolling_median_t(const rolling_median_t&) = delete; + +public: + //creates new rolling_median_t: to calculate `nItems` running median. + rolling_median_t(size_t N): N(N) + { + int size = N * (sizeof(Item) + sizeof(int) * 2); + data = (Item*)malloc(size); + pos = (int*) (data + N); + heap = pos + N + (N / 2); //points to middle of storage. + clear(); + } + + rolling_median_t(rolling_median_t &&m) + { + free(data); + memcpy(this, &m, sizeof(rolling_median_t)); + m.data = NULL; + } + rolling_median_t &operator=(rolling_median_t &&m) + { + free(data); + memcpy(this, &m, sizeof(rolling_median_t)); + m.data = NULL; + return *this; + } + + ~rolling_median_t() + { + free(data); + } + + void clear() + { + idx = 0; + minCt = 0; + maxCt = 0; + sz = 0; + int nItems = N; + while (nItems--) //set up initial heap fill pattern: median,max,min,max,... + { + pos[nItems] = ((nItems + 1) / 2) * ((nItems & 1) ? -1 : 1); + heap[pos[nItems]] = nItems; + } + } + + int size() const + { + return sz; + } + + //Inserts item, maintains median in O(lg nItems) + void insert(Item v) + { + int p = pos[idx]; + Item old = data[idx]; + data[idx] = v; + idx = (idx + 1) % N; + sz = std::min<int>(sz + 1, N); + if (p > 0) //new item is in minHeap + { + if (minCt < (N - 1) / 2) + { + ++minCt; + } + else if (v > old) + { + minSortDown(p); + return; + } + if (minSortUp(p) && mmCmpExch(0, -1)) + maxSortDown(-1); + } + else if (p < 0) //new item is in maxheap + { + if (maxCt < N / 2) + { + ++maxCt; + } + else if (v < old) + { + maxSortDown(p); + return; + } + if (maxSortUp(p) && minCt && mmCmpExch(1, 0)) + minSortDown(1); + } + else //new item is at median + { + if (maxCt && maxSortUp(-1)) + maxSortDown(-1); + if (minCt && minSortUp(1)) + minSortDown(1); + } + } + + //returns median item (or average of 2 when item count is even) + Item median() const + { + Item v = data[heap[0]]; + if (minCt < maxCt) + { + v = (v + data[heap[-1]]) / 2; + } + return v; + } +}; + +} +} |