// Copyright (c) 2014-2016, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include <cstring>
#include <cstdint>
#include <cstdio>
#include <iostream>
#include <vector>
#include <boost/foreach.hpp>
#include "cryptonote_core/cryptonote_basic.h"
#include "cryptonote_core/cryptonote_basic_impl.h"
#include "ringct/rctSigs.h"
#include "serialization/serialization.h"
#include "serialization/binary_archive.h"
#include "serialization/json_archive.h"
#include "serialization/debug_archive.h"
#include "serialization/variant.h"
#include "serialization/vector.h"
#include "serialization/binary_utils.h"
#include "gtest/gtest.h"
using namespace std;
struct Struct
{
int32_t a;
int32_t b;
char blob[8];
};
template <class Archive>
struct serializer<Archive, Struct>
{
static bool serialize(Archive &ar, Struct &s) {
ar.begin_object();
ar.tag("a");
ar.serialize_int(s.a);
ar.tag("b");
ar.serialize_int(s.b);
ar.tag("blob");
ar.serialize_blob(s.blob, sizeof(s.blob));
ar.end_object();
return true;
}
};
struct Struct1
{
vector<boost::variant<Struct, int32_t>> si;
vector<int16_t> vi;
BEGIN_SERIALIZE_OBJECT()
FIELD(si)
FIELD(vi)
END_SERIALIZE()
/*template <bool W, template <bool> class Archive>
bool do_serialize(Archive<W> &ar)
{
ar.begin_object();
ar.tag("si");
::do_serialize(ar, si);
ar.tag("vi");
::do_serialize(ar, vi);
ar.end_object();
}*/
};
struct Blob
{
uint64_t a;
uint32_t b;
bool operator==(const Blob& rhs) const
{
return a == rhs.a;
}
};
VARIANT_TAG(binary_archive, Struct, 0xe0);
VARIANT_TAG(binary_archive, int, 0xe1);
VARIANT_TAG(json_archive, Struct, "struct");
VARIANT_TAG(json_archive, int, "int");
VARIANT_TAG(debug_archive, Struct1, "struct1");
VARIANT_TAG(debug_archive, Struct, "struct");
VARIANT_TAG(debug_archive, int, "int");
BLOB_SERIALIZER(Blob);
bool try_parse(const string &blob)
{
Struct1 s1;
return serialization::parse_binary(blob, s1);
}
TEST(Serialization, BinaryArchiveInts) {
uint64_t x = 0xff00000000, x1;
ostringstream oss;
binary_archive<true> oar(oss);
oar.serialize_int(x);
ASSERT_TRUE(oss.good());
ASSERT_EQ(8, oss.str().size());
ASSERT_EQ(string("\0\0\0\0\xff\0\0\0", 8), oss.str());
istringstream iss(oss.str());
binary_archive<false> iar(iss);
iar.serialize_int(x1);
ASSERT_EQ(8, iss.tellg());
ASSERT_TRUE(iss.good());
ASSERT_EQ(x, x1);
}
TEST(Serialization, BinaryArchiveVarInts) {
uint64_t x = 0xff00000000, x1;
ostringstream oss;
binary_archive<true> oar(oss);
oar.serialize_varint(x);
ASSERT_TRUE(oss.good());
ASSERT_EQ(6, oss.str().size());
ASSERT_EQ(string("\x80\x80\x80\x80\xF0\x1F", 6), oss.str());
istringstream iss(oss.str());
binary_archive<false> iar(iss);
iar.serialize_varint(x1);
ASSERT_TRUE(iss.good());
ASSERT_EQ(x, x1);
}
TEST(Serialization, Test1) {
ostringstream str;
binary_archive<true> ar(str);
Struct1 s1;
s1.si.push_back(0);
{
Struct s;
s.a = 5;
s.b = 65539;
std::memcpy(s.blob, "12345678", 8);
s1.si.push_back(s);
}
s1.si.push_back(1);
s1.vi.push_back(10);
s1.vi.push_back(22);
string blob;
ASSERT_TRUE(serialization::dump_binary(s1, blob));
ASSERT_TRUE(try_parse(blob));
ASSERT_EQ('\xE0', blob[6]);
blob[6] = '\xE1';
ASSERT_FALSE(try_parse(blob));
blob[6] = '\xE2';
ASSERT_FALSE(try_parse(blob));
}
TEST(Serialization, Overflow) {
Blob x = { 0xff00000000 };
Blob x1;
string blob;
ASSERT_TRUE(serialization::dump_binary(x, blob));
ASSERT_EQ(sizeof(Blob), blob.size());
ASSERT_TRUE(serialization::parse_binary(blob, x1));
ASSERT_EQ(x, x1);
vector<Blob> bigvector;
ASSERT_FALSE(serialization::parse_binary(blob, bigvector));
ASSERT_EQ(0, bigvector.size());
}
TEST(Serialization, serializes_vector_uint64_as_varint)
{
std::vector<uint64_t> v;
string blob;
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(1, blob.size());
// +1 byte
v.push_back(0);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(2, blob.size());
// +1 byte
v.push_back(1);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(3, blob.size());
// +2 bytes
v.push_back(0x80);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(5, blob.size());
// +2 bytes
v.push_back(0xFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(7, blob.size());
// +2 bytes
v.push_back(0x3FFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(9, blob.size());
// +3 bytes
v.push_back(0x40FF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(12, blob.size());
// +10 bytes
v.push_back(0xFFFFFFFFFFFFFFFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(22, blob.size());
}
TEST(Serialization, serializes_vector_int64_as_fixed_int)
{
std::vector<int64_t> v;
string blob;
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(1, blob.size());
// +8 bytes
v.push_back(0);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(9, blob.size());
// +8 bytes
v.push_back(1);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(17, blob.size());
// +8 bytes
v.push_back(0x80);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(25, blob.size());
// +8 bytes
v.push_back(0xFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(33, blob.size());
// +8 bytes
v.push_back(0x3FFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(41, blob.size());
// +8 bytes
v.push_back(0x40FF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(49, blob.size());
// +8 bytes
v.push_back(0xFFFFFFFFFFFFFFFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(57, blob.size());
}
namespace
{
template<typename T>
std::vector<T> linearize_vector2(const std::vector< std::vector<T> >& vec_vec)
{
std::vector<T> res;
BOOST_FOREACH(const auto& vec, vec_vec)
{
res.insert(res.end(), vec.begin(), vec.end());
}
return res;
}
}
TEST(Serialization, serializes_transacion_signatures_correctly)
{
using namespace cryptonote;
transaction tx;
transaction tx1;
string blob;
// Empty tx
tx.set_null();
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(5, blob.size()); // 5 bytes + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Miner tx without signatures
txin_gen txin_gen1;
txin_gen1.height = 0;
tx.set_null();
tx.vin.push_back(txin_gen1);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(7, blob.size()); // 5 bytes + 2 bytes vin[0] + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Miner tx with empty signatures 2nd vector
tx.signatures.resize(1);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(7, blob.size()); // 5 bytes + 2 bytes vin[0] + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Miner tx with one signature
tx.signatures[0].resize(1);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Miner tx with 2 empty vectors
tx.signatures.resize(2);
tx.signatures[0].resize(0);
tx.signatures[1].resize(0);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Miner tx with 2 signatures
tx.signatures[0].resize(1);
tx.signatures[1].resize(1);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Two txin_gen, no signatures
tx.vin.push_back(txin_gen1);
tx.signatures.resize(0);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(9, blob.size()); // 5 bytes + 2 * 2 bytes vins + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Two txin_gen, signatures vector contains only one empty element
tx.signatures.resize(1);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Two txin_gen, signatures vector contains two empty elements
tx.signatures.resize(2);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(9, blob.size()); // 5 bytes + 2 * 2 bytes vins + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Two txin_gen, signatures vector contains three empty elements
tx.signatures.resize(3);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Two txin_gen, signatures vector contains two non empty elements
tx.signatures.resize(2);
tx.signatures[0].resize(1);
tx.signatures[1].resize(1);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// A few bytes instead of signature
tx.vin.clear();
tx.vin.push_back(txin_gen1);
tx.signatures.clear();
ASSERT_TRUE(serialization::dump_binary(tx, blob));
blob.append(std::string(sizeof(crypto::signature) / 2, 'x'));
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// blob contains one signature
blob.append(std::string(sizeof(crypto::signature) / 2, 'y'));
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// Not enough signature vectors for all inputs
txin_to_key txin_to_key1;
txin_to_key1.key_offsets.resize(2);
tx.vin.clear();
tx.vin.push_back(txin_to_key1);
tx.vin.push_back(txin_to_key1);
tx.signatures.resize(1);
tx.signatures[0].resize(2);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Too much signatures for two inputs
tx.signatures.resize(3);
tx.signatures[0].resize(2);
tx.signatures[1].resize(2);
tx.signatures[2].resize(2);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// First signatures vector contains too little elements
tx.signatures.resize(2);
tx.signatures[0].resize(1);
tx.signatures[1].resize(2);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// First signatures vector contains too much elements
tx.signatures.resize(2);
tx.signatures[0].resize(3);
tx.signatures[1].resize(2);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// There are signatures for each input
tx.signatures.resize(2);
tx.signatures[0].resize(2);
tx.signatures[1].resize(2);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Blob doesn't contain enough data
blob.resize(blob.size() - sizeof(crypto::signature) / 2);
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// Blob contains too much data
blob.resize(blob.size() + sizeof(crypto::signature));
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// Blob contains one excess signature
blob.resize(blob.size() + sizeof(crypto::signature) / 2);
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
}
TEST(Serialization, serializes_ringct_types)
{
string blob;
rct::key key0, key1;
rct::keyV keyv0, keyv1;
rct::keyM keym0, keym1;
rct::ctkey ctkey0, ctkey1;
rct::ctkeyV ctkeyv0, ctkeyv1;
rct::ctkeyM ctkeym0, ctkeym1;
rct::ecdhTuple ecdh0, ecdh1;
rct::asnlSig asnl0, asnl1;
rct::mgSig mg0, mg1;
rct::rangeSig rg0, rg1;
rct::rctSig s0, s1;
cryptonote::transaction tx0, tx1;
key0 = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(key0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, key1));
ASSERT_TRUE(key0 == key1);
keyv0 = rct::skvGen(30);
for (size_t n = 0; n < keyv0.size(); ++n)
keyv0[n] = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(keyv0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, keyv1));
ASSERT_TRUE(keyv0.size() == keyv1.size());
for (size_t n = 0; n < keyv0.size(); ++n)
{
ASSERT_TRUE(keyv0[n] == keyv1[n]);
}
keym0 = rct::keyMInit(9, 12);
for (size_t n = 0; n < keym0.size(); ++n)
for (size_t i = 0; i < keym0[n].size(); ++i)
keym0[n][i] = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(keym0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, keym1));
ASSERT_TRUE(keym0.size() == keym1.size());
for (size_t n = 0; n < keym0.size(); ++n)
{
ASSERT_TRUE(keym0[n].size() == keym1[n].size());
for (size_t i = 0; i < keym0[n].size(); ++i)
{
ASSERT_TRUE(keym0[n][i] == keym1[n][i]);
}
}
rct::skpkGen(ctkey0.dest, ctkey0.mask);
ASSERT_TRUE(serialization::dump_binary(ctkey0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ctkey1));
ASSERT_TRUE(!memcmp(&ctkey0, &ctkey1, sizeof(ctkey0)));
ctkeyv0 = std::vector<rct::ctkey>(14);
for (size_t n = 0; n < ctkeyv0.size(); ++n)
rct::skpkGen(ctkeyv0[n].dest, ctkeyv0[n].mask);
ASSERT_TRUE(serialization::dump_binary(ctkeyv0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ctkeyv1));
ASSERT_TRUE(ctkeyv0.size() == ctkeyv1.size());
for (size_t n = 0; n < ctkeyv0.size(); ++n)
{
ASSERT_TRUE(!memcmp(&ctkeyv0[n], &ctkeyv1[n], sizeof(ctkeyv0[n])));
}
ctkeym0 = std::vector<rct::ctkeyV>(9);
for (size_t n = 0; n < ctkeym0.size(); ++n)
{
ctkeym0[n] = std::vector<rct::ctkey>(11);
for (size_t i = 0; i < ctkeym0[n].size(); ++i)
rct::skpkGen(ctkeym0[n][i].dest, ctkeym0[n][i].mask);
}
ASSERT_TRUE(serialization::dump_binary(ctkeym0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ctkeym1));
ASSERT_TRUE(ctkeym0.size() == ctkeym1.size());
for (size_t n = 0; n < ctkeym0.size(); ++n)
{
ASSERT_TRUE(ctkeym0[n].size() == ctkeym1[n].size());
for (size_t i = 0; i < ctkeym0.size(); ++i)
{
ASSERT_TRUE(!memcmp(&ctkeym0[n][i], &ctkeym1[n][i], sizeof(ctkeym0[n][i])));
}
}
ecdh0.mask = rct::skGen();
ecdh0.amount = rct::skGen();
ecdh0.senderPk = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(ecdh0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ecdh1));
ASSERT_TRUE(!memcmp(&ecdh0, &ecdh1, sizeof(ecdh0)));
for (size_t n = 0; n < 64; ++n)
{
asnl0.L1[n] = rct::skGen();
asnl0.s2[n] = rct::skGen();
}
asnl0.s = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(asnl0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, asnl1));
ASSERT_TRUE(!memcmp(&asnl0, &asnl1, sizeof(asnl0)));
// create a full rct signature to use its innards
rct::ctkeyV sc, pc;
rct::ctkey sctmp, pctmp;
tie(sctmp, pctmp) = rct::ctskpkGen(6000);
sc.push_back(sctmp);
pc.push_back(pctmp);
tie(sctmp, pctmp) = rct::ctskpkGen(7000);
sc.push_back(sctmp);
pc.push_back(pctmp);
vector<uint64_t> amounts;
//add output 500
amounts.push_back(500);
rct::keyV destinations;
rct::key Sk, Pk;
rct::skpkGen(Sk, Pk);
destinations.push_back(Pk);
//add output for 12500
amounts.push_back(12500);
rct::skpkGen(Sk, Pk);
destinations.push_back(Pk);
//compute rct data with mixin 500
s0 = rct::genRct(rct::zero(), sc, pc, destinations, amounts, 3);
mg0 = s0.MG;
ASSERT_TRUE(serialization::dump_binary(mg0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, mg1));
ASSERT_TRUE(mg0.ss.size() == mg1.ss.size());
for (size_t n = 0; n < mg0.ss.size(); ++n)
{
ASSERT_TRUE(mg0.ss[n] == mg1.ss[n]);
}
ASSERT_TRUE(mg0.cc == mg1.cc);
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(mg1.II.size() == 1);
ASSERT_TRUE(mg1.II[0] == mg0.II.back());
rg0 = s0.rangeSigs.front();
ASSERT_TRUE(serialization::dump_binary(rg0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, rg1));
ASSERT_TRUE(!memcmp(&rg0, &rg1, sizeof(rg0)));
ASSERT_TRUE(serialization::dump_binary(s0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, s1));
ASSERT_TRUE(s0.simple == s1.simple);
ASSERT_TRUE(s0.rangeSigs.size() == s1.rangeSigs.size());
for (size_t n = 0; n < s0.rangeSigs.size(); ++n)
{
ASSERT_TRUE(!memcmp(&s0.rangeSigs[n], &s1.rangeSigs[n], sizeof(s0.rangeSigs[n])));
}
ASSERT_TRUE(s0.MG.ss.size() == s1.MG.ss.size());
for (size_t n = 0; n < s0.MG.ss.size(); ++n)
{
ASSERT_TRUE(s0.MG.ss[n] == s1.MG.ss[n]);
}
ASSERT_TRUE(s0.MG.cc == s1.MG.cc);
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(s1.MG.II.size() == 1);
ASSERT_TRUE(s1.MG.II[0] == s0.MG.II.back());
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(s1.mixRing.size() == 0);
ASSERT_TRUE(s0.ecdhInfo.size() == s1.ecdhInfo.size());
for (size_t n = 0; n < s0.ecdhInfo.size(); ++n)
{
ASSERT_TRUE(!memcmp(&s0.ecdhInfo[n], &s1.ecdhInfo[n], sizeof(s0.ecdhInfo[n])));
}
ASSERT_TRUE(s0.outPk.size() == s1.outPk.size());
for (size_t n = 0; n < s0.outPk.size(); ++n)
{
// serialization only does the mask
ASSERT_TRUE(!memcmp(&s0.outPk[n].mask, &s1.outPk[n].mask, sizeof(s0.outPk[n].mask)));
}
tx0.set_null();
tx0.version = 2;
cryptonote::txin_to_key txin_to_key1;
txin_to_key1.key_offsets.resize(2);
cryptonote::txin_to_key txin_to_key2;
txin_to_key2.key_offsets.resize(2);
tx0.vin.push_back(txin_to_key1);
tx0.vin.push_back(txin_to_key2);
tx0.vout.push_back(cryptonote::tx_out());
tx0.rct_signatures = s0;
ASSERT_EQ(tx0.rct_signatures.rangeSigs.size(), 2);
ASSERT_TRUE(serialization::dump_binary(tx0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx1.rct_signatures.rangeSigs.size(), 2);
std::string blob2;
ASSERT_TRUE(serialization::dump_binary(tx1, blob2));
ASSERT_TRUE(blob == blob2);
}