aboutsummaryrefslogblamecommitdiff
path: root/tests/unit_tests/serialization.cpp
blob: 0a53aeae08084963c9c79a08e7d374c135ba0191 (plain) (tree)
1
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
                                              



























                                                                                          








                                                  
                           





















































































































































































































































































































































































































                                                                                               














































































































                                                                                  
                        







                             
                                                          


                                   
                                                                               









                                                      



                                                                          







                                                      
                                      










                                                                                      






                                                                          







                                                                                   

                                                                                         



















                                                      
// Copyright (c) 2014-2016, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// 
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers

#include <cstring>
#include <cstdint>
#include <cstdio>
#include <iostream>
#include <vector>
#include <boost/foreach.hpp>
#include "cryptonote_core/cryptonote_basic.h"
#include "cryptonote_core/cryptonote_basic_impl.h"
#include "ringct/rctSigs.h"
#include "serialization/serialization.h"
#include "serialization/binary_archive.h"
#include "serialization/json_archive.h"
#include "serialization/debug_archive.h"
#include "serialization/variant.h"
#include "serialization/vector.h"
#include "serialization/binary_utils.h"
#include "gtest/gtest.h"
using namespace std;

struct Struct
{
  int32_t a;
  int32_t b;
  char blob[8];
};

template <class Archive>
struct serializer<Archive, Struct>
{
  static bool serialize(Archive &ar, Struct &s) {
    ar.begin_object();
    ar.tag("a");
    ar.serialize_int(s.a);
    ar.tag("b");
    ar.serialize_int(s.b);
    ar.tag("blob");
    ar.serialize_blob(s.blob, sizeof(s.blob));
    ar.end_object();
    return true;
  }
};

struct Struct1
{
  vector<boost::variant<Struct, int32_t>> si;
  vector<int16_t> vi;

  BEGIN_SERIALIZE_OBJECT()
    FIELD(si)
    FIELD(vi)
  END_SERIALIZE()
  /*template <bool W, template <bool> class Archive>
  bool do_serialize(Archive<W> &ar)
  {
    ar.begin_object();
    ar.tag("si");
    ::do_serialize(ar, si);
    ar.tag("vi");
    ::do_serialize(ar, vi);
    ar.end_object();
  }*/
};

struct Blob
{
  uint64_t a;
  uint32_t b;

  bool operator==(const Blob& rhs) const
  {
    return a == rhs.a;
  }
};

VARIANT_TAG(binary_archive, Struct, 0xe0);
VARIANT_TAG(binary_archive, int, 0xe1);
VARIANT_TAG(json_archive, Struct, "struct");
VARIANT_TAG(json_archive, int, "int");
VARIANT_TAG(debug_archive, Struct1, "struct1");
VARIANT_TAG(debug_archive, Struct, "struct");
VARIANT_TAG(debug_archive, int, "int");

BLOB_SERIALIZER(Blob);

bool try_parse(const string &blob)
{
  Struct1 s1;
  return serialization::parse_binary(blob, s1);
}

TEST(Serialization, BinaryArchiveInts) {
  uint64_t x = 0xff00000000, x1;

  ostringstream oss;
  binary_archive<true> oar(oss);
  oar.serialize_int(x);
  ASSERT_TRUE(oss.good());
  ASSERT_EQ(8, oss.str().size());
  ASSERT_EQ(string("\0\0\0\0\xff\0\0\0", 8), oss.str());

  istringstream iss(oss.str());
  binary_archive<false> iar(iss);
  iar.serialize_int(x1);
  ASSERT_EQ(8, iss.tellg());
  ASSERT_TRUE(iss.good());

  ASSERT_EQ(x, x1);
}

TEST(Serialization, BinaryArchiveVarInts) {
  uint64_t x = 0xff00000000, x1;

  ostringstream oss;
  binary_archive<true> oar(oss);
  oar.serialize_varint(x);
  ASSERT_TRUE(oss.good());
  ASSERT_EQ(6, oss.str().size());
  ASSERT_EQ(string("\x80\x80\x80\x80\xF0\x1F", 6), oss.str());

  istringstream iss(oss.str());
  binary_archive<false> iar(iss);
  iar.serialize_varint(x1);
  ASSERT_TRUE(iss.good());
  ASSERT_EQ(x, x1);
}

TEST(Serialization, Test1) {
  ostringstream str;
  binary_archive<true> ar(str);

  Struct1 s1;
  s1.si.push_back(0);
  {
    Struct s;
    s.a = 5;
    s.b = 65539;
    std::memcpy(s.blob, "12345678", 8);
    s1.si.push_back(s);
  }
  s1.si.push_back(1);
  s1.vi.push_back(10);
  s1.vi.push_back(22);

  string blob;
  ASSERT_TRUE(serialization::dump_binary(s1, blob));
  ASSERT_TRUE(try_parse(blob));

  ASSERT_EQ('\xE0', blob[6]);
  blob[6] = '\xE1';
  ASSERT_FALSE(try_parse(blob));
  blob[6] = '\xE2';
  ASSERT_FALSE(try_parse(blob));
}

TEST(Serialization, Overflow) {
  Blob x = { 0xff00000000 };
  Blob x1;

  string blob;
  ASSERT_TRUE(serialization::dump_binary(x, blob));
  ASSERT_EQ(sizeof(Blob), blob.size());

  ASSERT_TRUE(serialization::parse_binary(blob, x1));
  ASSERT_EQ(x, x1);

  vector<Blob> bigvector;
  ASSERT_FALSE(serialization::parse_binary(blob, bigvector));
  ASSERT_EQ(0, bigvector.size());
}

TEST(Serialization, serializes_vector_uint64_as_varint)
{
  std::vector<uint64_t> v;
  string blob;

  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(1, blob.size());

  // +1 byte
  v.push_back(0);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(2, blob.size());

  // +1 byte
  v.push_back(1);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(3, blob.size());

  // +2 bytes
  v.push_back(0x80);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(5, blob.size());

  // +2 bytes
  v.push_back(0xFF);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(7, blob.size());

  // +2 bytes
  v.push_back(0x3FFF);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(9, blob.size());

  // +3 bytes
  v.push_back(0x40FF);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(12, blob.size());

  // +10 bytes
  v.push_back(0xFFFFFFFFFFFFFFFF);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(22, blob.size());
}

TEST(Serialization, serializes_vector_int64_as_fixed_int)
{
  std::vector<int64_t> v;
  string blob;

  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(1, blob.size());

  // +8 bytes
  v.push_back(0);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(9, blob.size());

  // +8 bytes
  v.push_back(1);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(17, blob.size());

  // +8 bytes
  v.push_back(0x80);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(25, blob.size());

  // +8 bytes
  v.push_back(0xFF);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(33, blob.size());

  // +8 bytes
  v.push_back(0x3FFF);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(41, blob.size());

  // +8 bytes
  v.push_back(0x40FF);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(49, blob.size());

  // +8 bytes
  v.push_back(0xFFFFFFFFFFFFFFFF);
  ASSERT_TRUE(serialization::dump_binary(v, blob));
  ASSERT_EQ(57, blob.size());
}

namespace
{
  template<typename T>
  std::vector<T> linearize_vector2(const std::vector< std::vector<T> >& vec_vec)
  {
    std::vector<T> res;
    BOOST_FOREACH(const auto& vec, vec_vec)
    {
      res.insert(res.end(), vec.begin(), vec.end());
    }
    return res;
  }
}

TEST(Serialization, serializes_transacion_signatures_correctly)
{
  using namespace cryptonote;

  transaction tx;
  transaction tx1;
  string blob;

  // Empty tx
  tx.set_null();
  ASSERT_TRUE(serialization::dump_binary(tx, blob));
  ASSERT_EQ(5, blob.size()); // 5 bytes + 0 bytes extra + 0 bytes signatures
  ASSERT_TRUE(serialization::parse_binary(blob, tx1));
  ASSERT_EQ(tx, tx1);
  ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));

  // Miner tx without signatures
  txin_gen txin_gen1;
  txin_gen1.height = 0;
  tx.set_null();
  tx.vin.push_back(txin_gen1);
  ASSERT_TRUE(serialization::dump_binary(tx, blob));
  ASSERT_EQ(7, blob.size()); // 5 bytes + 2 bytes vin[0] + 0 bytes extra + 0 bytes signatures
  ASSERT_TRUE(serialization::parse_binary(blob, tx1));
  ASSERT_EQ(tx, tx1);
  ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));

  // Miner tx with empty signatures 2nd vector
  tx.signatures.resize(1);
  ASSERT_TRUE(serialization::dump_binary(tx, blob));
  ASSERT_EQ(7, blob.size()); // 5 bytes + 2 bytes vin[0] + 0 bytes extra + 0 bytes signatures
  ASSERT_TRUE(serialization::parse_binary(blob, tx1));
  ASSERT_EQ(tx, tx1);
  ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));

  // Miner tx with one signature
  tx.signatures[0].resize(1);
  ASSERT_FALSE(serialization::dump_binary(tx, blob));

  // Miner tx with 2 empty vectors
  tx.signatures.resize(2);
  tx.signatures[0].resize(0);
  tx.signatures[1].resize(0);
  ASSERT_FALSE(serialization::dump_binary(tx, blob));

  // Miner tx with 2 signatures
  tx.signatures[0].resize(1);
  tx.signatures[1].resize(1);
  ASSERT_FALSE(serialization::dump_binary(tx, blob));

  // Two txin_gen, no signatures
  tx.vin.push_back(txin_gen1);
  tx.signatures.resize(0);
  ASSERT_TRUE(serialization::dump_binary(tx, blob));
  ASSERT_EQ(9, blob.size()); // 5 bytes + 2 * 2 bytes vins + 0 bytes extra + 0 bytes signatures
  ASSERT_TRUE(serialization::parse_binary(blob, tx1));
  ASSERT_EQ(tx, tx1);
  ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));

  // Two txin_gen, signatures vector contains only one empty element
  tx.signatures.resize(1);
  ASSERT_FALSE(serialization::dump_binary(tx, blob));

  // Two txin_gen, signatures vector contains two empty elements
  tx.signatures.resize(2);
  ASSERT_TRUE(serialization::dump_binary(tx, blob));
  ASSERT_EQ(9, blob.size()); // 5 bytes + 2 * 2 bytes vins + 0 bytes extra + 0 bytes signatures
  ASSERT_TRUE(serialization::parse_binary(blob, tx1));
  ASSERT_EQ(tx, tx1);
  ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));

  // Two txin_gen, signatures vector contains three empty elements
  tx.signatures.resize(3);
  ASSERT_FALSE(serialization::dump_binary(tx, blob));

  // Two txin_gen, signatures vector contains two non empty elements
  tx.signatures.resize(2);
  tx.signatures[0].resize(1);
  tx.signatures[1].resize(1);
  ASSERT_FALSE(serialization::dump_binary(tx, blob));

  // A few bytes instead of signature
  tx.vin.clear();
  tx.vin.push_back(txin_gen1);
  tx.signatures.clear();
  ASSERT_TRUE(serialization::dump_binary(tx, blob));
  blob.append(std::string(sizeof(crypto::signature) / 2, 'x'));
  ASSERT_FALSE(serialization::parse_binary(blob, tx1));

  // blob contains one signature
  blob.append(std::string(sizeof(crypto::signature) / 2, 'y'));
  ASSERT_FALSE(serialization::parse_binary(blob, tx1));

  // Not enough signature vectors for all inputs
  txin_to_key txin_to_key1;
  txin_to_key1.key_offsets.resize(2);
  tx.vin.clear();
  tx.vin.push_back(txin_to_key1);
  tx.vin.push_back(txin_to_key1);
  tx.signatures.resize(1);
  tx.signatures[0].resize(2);
  ASSERT_FALSE(serialization::dump_binary(tx, blob));

  // Too much signatures for two inputs
  tx.signatures.resize(3);
  tx.signatures[0].resize(2);
  tx.signatures[1].resize(2);
  tx.signatures[2].resize(2);
  ASSERT_FALSE(serialization::dump_binary(tx, blob));

  // First signatures vector contains too little elements
  tx.signatures.resize(2);
  tx.signatures[0].resize(1);
  tx.signatures[1].resize(2);
  ASSERT_FALSE(serialization::dump_binary(tx, blob));

  // First signatures vector contains too much elements
  tx.signatures.resize(2);
  tx.signatures[0].resize(3);
  tx.signatures[1].resize(2);
  ASSERT_FALSE(serialization::dump_binary(tx, blob));

  // There are signatures for each input
  tx.signatures.resize(2);
  tx.signatures[0].resize(2);
  tx.signatures[1].resize(2);
  ASSERT_TRUE(serialization::dump_binary(tx, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, tx1));
  ASSERT_EQ(tx, tx1);
  ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));

  // Blob doesn't contain enough data
  blob.resize(blob.size() - sizeof(crypto::signature) / 2);
  ASSERT_FALSE(serialization::parse_binary(blob, tx1));

  // Blob contains too much data
  blob.resize(blob.size() + sizeof(crypto::signature));
  ASSERT_FALSE(serialization::parse_binary(blob, tx1));

  // Blob contains one excess signature
  blob.resize(blob.size() + sizeof(crypto::signature) / 2);
  ASSERT_FALSE(serialization::parse_binary(blob, tx1));
}

TEST(Serialization, serializes_ringct_types)
{
  string blob;
  rct::key key0, key1;
  rct::keyV keyv0, keyv1;
  rct::keyM keym0, keym1;
  rct::ctkey ctkey0, ctkey1;
  rct::ctkeyV ctkeyv0, ctkeyv1;
  rct::ctkeyM ctkeym0, ctkeym1;
  rct::ecdhTuple ecdh0, ecdh1;
  rct::asnlSig asnl0, asnl1;
  rct::mgSig mg0, mg1;
  rct::rangeSig rg0, rg1;
  rct::rctSig s0, s1;
  cryptonote::transaction tx0, tx1;

  key0 = rct::skGen();
  ASSERT_TRUE(serialization::dump_binary(key0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, key1));
  ASSERT_TRUE(key0 == key1);

  keyv0 = rct::skvGen(30);
  for (size_t n = 0; n < keyv0.size(); ++n)
    keyv0[n] = rct::skGen();
  ASSERT_TRUE(serialization::dump_binary(keyv0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, keyv1));
  ASSERT_TRUE(keyv0.size() == keyv1.size());
  for (size_t n = 0; n < keyv0.size(); ++n)
  {
    ASSERT_TRUE(keyv0[n] == keyv1[n]);
  }

  keym0 = rct::keyMInit(9, 12);
  for (size_t n = 0; n < keym0.size(); ++n)
    for (size_t i = 0; i < keym0[n].size(); ++i)
      keym0[n][i] = rct::skGen();
  ASSERT_TRUE(serialization::dump_binary(keym0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, keym1));
  ASSERT_TRUE(keym0.size() == keym1.size());
  for (size_t n = 0; n < keym0.size(); ++n)
  {
    ASSERT_TRUE(keym0[n].size() == keym1[n].size());
    for (size_t i = 0; i < keym0[n].size(); ++i)
    {
      ASSERT_TRUE(keym0[n][i] == keym1[n][i]);
    }
  }

  rct::skpkGen(ctkey0.dest, ctkey0.mask);
  ASSERT_TRUE(serialization::dump_binary(ctkey0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, ctkey1));
  ASSERT_TRUE(!memcmp(&ctkey0, &ctkey1, sizeof(ctkey0)));

  ctkeyv0 = std::vector<rct::ctkey>(14);
  for (size_t n = 0; n < ctkeyv0.size(); ++n)
    rct::skpkGen(ctkeyv0[n].dest, ctkeyv0[n].mask);
  ASSERT_TRUE(serialization::dump_binary(ctkeyv0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, ctkeyv1));
  ASSERT_TRUE(ctkeyv0.size() == ctkeyv1.size());
  for (size_t n = 0; n < ctkeyv0.size(); ++n)
  {
    ASSERT_TRUE(!memcmp(&ctkeyv0[n], &ctkeyv1[n], sizeof(ctkeyv0[n])));
  }

  ctkeym0 = std::vector<rct::ctkeyV>(9);
  for (size_t n = 0; n < ctkeym0.size(); ++n)
  {
    ctkeym0[n] = std::vector<rct::ctkey>(11);
    for (size_t i = 0; i < ctkeym0[n].size(); ++i)
      rct::skpkGen(ctkeym0[n][i].dest, ctkeym0[n][i].mask);
  }
  ASSERT_TRUE(serialization::dump_binary(ctkeym0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, ctkeym1));
  ASSERT_TRUE(ctkeym0.size() == ctkeym1.size());
  for (size_t n = 0; n < ctkeym0.size(); ++n)
  {
    ASSERT_TRUE(ctkeym0[n].size() == ctkeym1[n].size());
    for (size_t i = 0; i < ctkeym0.size(); ++i)
    {
      ASSERT_TRUE(!memcmp(&ctkeym0[n][i], &ctkeym1[n][i], sizeof(ctkeym0[n][i])));
    }
  }

  ecdh0.mask = rct::skGen();
  ecdh0.amount = rct::skGen();
  ecdh0.senderPk = rct::skGen();
  ASSERT_TRUE(serialization::dump_binary(ecdh0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, ecdh1));
  ASSERT_TRUE(!memcmp(&ecdh0, &ecdh1, sizeof(ecdh0)));

  for (size_t n = 0; n < 64; ++n)
  {
    asnl0.L1[n] = rct::skGen();
    asnl0.s2[n] = rct::skGen();
  }
  asnl0.s = rct::skGen();
  ASSERT_TRUE(serialization::dump_binary(asnl0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, asnl1));
  ASSERT_TRUE(!memcmp(&asnl0, &asnl1, sizeof(asnl0)));

  // create a full rct signature to use its innards
  rct::ctkeyV sc, pc;
  rct::ctkey sctmp, pctmp;
  tie(sctmp, pctmp) = rct::ctskpkGen(6000);
  sc.push_back(sctmp);
  pc.push_back(pctmp);
  tie(sctmp, pctmp) = rct::ctskpkGen(7000);
  sc.push_back(sctmp);
  pc.push_back(pctmp);
  vector<uint64_t> amounts;
  rct::keyV amount_keys;
  //add output 500
  amounts.push_back(500);
  rct::keyV destinations;
  rct::key Sk, Pk;
  rct::skpkGen(Sk, Pk);
  destinations.push_back(Pk);
  //add output for 12500
  amounts.push_back(12500);
  amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
  rct::skpkGen(Sk, Pk);
  destinations.push_back(Pk);
  //compute rct data with mixin 500
  s0 = rct::genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3);

  mg0 = s0.MG;
  ASSERT_TRUE(serialization::dump_binary(mg0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, mg1));
  ASSERT_TRUE(mg0.ss.size() == mg1.ss.size());
  for (size_t n = 0; n < mg0.ss.size(); ++n)
  {
    ASSERT_TRUE(mg0.ss[n] == mg1.ss[n]);
  }
  ASSERT_TRUE(mg0.cc == mg1.cc);

  // mixRing and II are not serialized, they are meant to be reconstructed
  ASSERT_TRUE(mg1.II.size() == 1);
  ASSERT_TRUE(mg1.II[0] == mg0.II.back());

  rg0 = s0.rangeSigs.front();
  ASSERT_TRUE(serialization::dump_binary(rg0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, rg1));
  ASSERT_TRUE(!memcmp(&rg0, &rg1, sizeof(rg0)));

  ASSERT_TRUE(serialization::dump_binary(s0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, s1));
  ASSERT_TRUE(s0.simple == s1.simple);
  ASSERT_TRUE(s0.rangeSigs.size() == s1.rangeSigs.size());
  for (size_t n = 0; n < s0.rangeSigs.size(); ++n)
  {
    ASSERT_TRUE(!memcmp(&s0.rangeSigs[n], &s1.rangeSigs[n], sizeof(s0.rangeSigs[n])));
  }
  ASSERT_TRUE(s0.MG.ss.size() == s1.MG.ss.size());
  for (size_t n = 0; n < s0.MG.ss.size(); ++n)
  {
    ASSERT_TRUE(s0.MG.ss[n] == s1.MG.ss[n]);
  }
  ASSERT_TRUE(s0.MG.cc == s1.MG.cc);
  // mixRing and II are not serialized, they are meant to be reconstructed
  ASSERT_TRUE(s1.MG.II.size() == 1);
  ASSERT_TRUE(s1.MG.II[0] == s0.MG.II.back());

  // mixRing and II are not serialized, they are meant to be reconstructed
  ASSERT_TRUE(s1.mixRing.size() == 0);

  ASSERT_TRUE(s0.ecdhInfo.size() == s1.ecdhInfo.size());
  for (size_t n = 0; n < s0.ecdhInfo.size(); ++n)
  {
    ASSERT_TRUE(!memcmp(&s0.ecdhInfo[n], &s1.ecdhInfo[n], sizeof(s0.ecdhInfo[n])));
  }
  ASSERT_TRUE(s0.outPk.size() == s1.outPk.size());
  for (size_t n = 0; n < s0.outPk.size(); ++n)
  {
    // serialization only does the mask
    ASSERT_TRUE(!memcmp(&s0.outPk[n].mask, &s1.outPk[n].mask, sizeof(s0.outPk[n].mask)));
  }

  tx0.set_null();
  tx0.version = 2;
  cryptonote::txin_to_key txin_to_key1;
  txin_to_key1.key_offsets.resize(2);
  cryptonote::txin_to_key txin_to_key2;
  txin_to_key2.key_offsets.resize(2);
  tx0.vin.push_back(txin_to_key1);
  tx0.vin.push_back(txin_to_key2);
  tx0.vout.push_back(cryptonote::tx_out());
  tx0.rct_signatures = s0;
  ASSERT_EQ(tx0.rct_signatures.rangeSigs.size(), 2);
  ASSERT_TRUE(serialization::dump_binary(tx0, blob));
  ASSERT_TRUE(serialization::parse_binary(blob, tx1));
  ASSERT_EQ(tx1.rct_signatures.rangeSigs.size(), 2);
  std::string blob2;
  ASSERT_TRUE(serialization::dump_binary(tx1, blob2));
  ASSERT_TRUE(blob == blob2);
}