// Copyright (c) 2019, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define IN_UNIT_TESTS
#include "gtest/gtest.h"
#include "cryptonote_core/blockchain.h"
#include "cryptonote_core/tx_pool.h"
#include "cryptonote_core/cryptonote_core.h"
#include "blockchain_db/testdb.h"
#define TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW 5000
namespace
{
class TestDB: public cryptonote::BaseTestDB
{
private:
struct block_t
{
size_t weight;
uint64_t long_term_weight;
};
public:
TestDB() { m_open = true; }
virtual void add_block( const cryptonote::block& blk
, size_t block_weight
, uint64_t long_term_block_weight
, const cryptonote::difficulty_type& cumulative_difficulty
, const uint64_t& coins_generated
, uint64_t num_rct_outs
, const crypto::hash& blk_hash
) override {
blocks.push_back({block_weight, long_term_block_weight});
}
virtual uint64_t height() const override { return blocks.size(); }
virtual size_t get_block_weight(const uint64_t &h) const override { return blocks[h].weight; }
virtual uint64_t get_block_long_term_weight(const uint64_t &h) const override { return blocks[h].long_term_weight; }
virtual crypto::hash top_block_hash() const override {
uint64_t h = height();
crypto::hash top = crypto::null_hash;
if (h)
*(uint64_t*)&top = h - 1;
return top;
}
virtual void pop_block(cryptonote::block &blk, std::vector<cryptonote::transaction> &txs) override { blocks.pop_back(); }
private:
std::vector<block_t> blocks;
};
static uint32_t lcg_seed = 0;
static uint32_t lcg()
{
lcg_seed = (lcg_seed * 0x100000001b3 + 0xcbf29ce484222325) & 0xffffffff;
return lcg_seed;
}
}
#define PREFIX_WINDOW(hf_version,window) \
std::unique_ptr<cryptonote::Blockchain> bc; \
cryptonote::tx_memory_pool txpool(*bc); \
bc.reset(new cryptonote::Blockchain(txpool)); \
struct get_test_options { \
const std::pair<uint8_t, uint64_t> hard_forks[3]; \
const cryptonote::test_options test_options = { \
hard_forks, \
window, \
}; \
get_test_options(): hard_forks{std::make_pair(1, (uint64_t)0), std::make_pair((uint8_t)hf_version, (uint64_t)1), std::make_pair((uint8_t)0, (uint64_t)0)} {} \
} opts; \
cryptonote::Blockchain *blockchain = bc.get(); \
bool r = blockchain->init(new TestDB(), cryptonote::FAKECHAIN, true, &opts.test_options, 0, NULL); \
ASSERT_TRUE(r)
#define PREFIX(hf_version) PREFIX_WINDOW(hf_version, TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW)
TEST(long_term_block_weight, empty_short)
{
PREFIX(9);
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
ASSERT_EQ(bc->get_current_cumulative_block_weight_median(), CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5);
ASSERT_EQ(bc->get_current_cumulative_block_weight_limit(), CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 * 2);
}
TEST(long_term_block_weight, identical_before_fork)
{
PREFIX(9);
for (uint64_t h = 1; h < 10 * TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW; ++h)
{
size_t w = h < CRYPTONOTE_REWARD_BLOCKS_WINDOW ? CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 : bc->get_current_cumulative_block_weight_limit();
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
}
for (uint64_t h = 0; h < 10 * TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW; ++h)
{
ASSERT_EQ(bc->get_db().get_block_long_term_weight(h), bc->get_db().get_block_weight(h));
}
}
TEST(long_term_block_weight, identical_after_fork_before_long_term_window)
{
PREFIX(10);
for (uint64_t h = 1; h <= TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW; ++h)
{
size_t w = h < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW ? CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 : bc->get_current_cumulative_block_weight_limit();
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
}
for (uint64_t h = 0; h < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW; ++h)
{
ASSERT_EQ(bc->get_db().get_block_long_term_weight(h), bc->get_db().get_block_weight(h));
}
}
TEST(long_term_block_weight, ceiling_at_30000000)
{
PREFIX(10);
for (uint64_t h = 0; h < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW + TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW / 2 - 1; ++h)
{
size_t w = h < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW ? CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 : bc->get_current_cumulative_block_weight_limit();
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
}
ASSERT_EQ(bc->get_current_cumulative_block_weight_median(), 15000000);
ASSERT_EQ(bc->get_current_cumulative_block_weight_limit(), 30000000);
}
TEST(long_term_block_weight, multi_pop)
{
PREFIX(10);
for (uint64_t h = 1; h <= TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW + 20; ++h)
{
size_t w = h < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW ? CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 : bc->get_current_cumulative_block_weight_limit();
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
}
const uint64_t effective_median = bc->get_current_cumulative_block_weight_median();
const uint64_t effective_limit = bc->get_current_cumulative_block_weight_limit();
for (uint64_t h = 0; h < 4; ++h)
{
size_t w = h < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW ? CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 : bc->get_current_cumulative_block_weight_limit();
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
}
cryptonote::block b;
std::vector<cryptonote::transaction> txs;
bc->get_db().pop_block(b, txs);
bc->get_db().pop_block(b, txs);
bc->get_db().pop_block(b, txs);
bc->get_db().pop_block(b, txs);
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
ASSERT_EQ(effective_median, bc->get_current_cumulative_block_weight_median());
ASSERT_EQ(effective_limit, bc->get_current_cumulative_block_weight_limit());
}
TEST(long_term_block_weight, multiple_updates)
{
PREFIX(10);
for (uint64_t h = 1; h <= 3 * TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW; ++h)
{
size_t w = h < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW ? CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 : bc->get_current_cumulative_block_weight_limit();
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
const uint64_t effective_median = bc->get_current_cumulative_block_weight_median();
const uint64_t effective_limit = bc->get_current_cumulative_block_weight_limit();
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
ASSERT_EQ(effective_median, bc->get_current_cumulative_block_weight_median());
ASSERT_EQ(effective_limit, bc->get_current_cumulative_block_weight_limit());
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
ASSERT_EQ(effective_median, bc->get_current_cumulative_block_weight_median());
ASSERT_EQ(effective_limit, bc->get_current_cumulative_block_weight_limit());
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
ASSERT_EQ(effective_median, bc->get_current_cumulative_block_weight_median());
ASSERT_EQ(effective_limit, bc->get_current_cumulative_block_weight_limit());
}
}
TEST(long_term_block_weight, pop_invariant_max)
{
PREFIX(10);
for (uint64_t h = 1; h < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW - 10; ++h)
{
size_t w = bc->get_db().height() < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW ? CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 : bc->get_current_cumulative_block_weight_limit();
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
}
for (int n = 0; n < 1000; ++n)
{
// pop some blocks, then add some more
int remove = 1 + (n * 17) % 8;
int add = (n * 23) % 12;
// save long term block weights we're about to remove
uint64_t old_ltbw[16], h0 = bc->get_db().height() - remove - 1;
for (int i = -2; i < remove; ++i)
{
old_ltbw[i + 2] = bc->get_db().get_block_long_term_weight(h0 + i);
}
for (int i = 0; i < remove; ++i)
{
cryptonote::block b;
std::vector<cryptonote::transaction> txs;
bc->get_db().pop_block(b, txs);
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
}
for (int i = 0; i < add; ++i)
{
size_t w = bc->get_db().height() < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW ? CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 : bc->get_current_cumulative_block_weight_limit();
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, bc->get_db().height(), bc->get_db().height(), {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
}
// check the new values are the same as the old ones
for (int i = -2; i < std::min(add, remove); ++i)
{
ASSERT_EQ(bc->get_db().get_block_long_term_weight(h0 + i), old_ltbw[i + 2]);
}
}
}
TEST(long_term_block_weight, pop_invariant_random)
{
PREFIX(10);
for (uint64_t h = 1; h < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW - 10; ++h)
{
size_t w = bc->get_db().height() < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW ? CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 : bc->get_current_cumulative_block_weight_limit();
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
}
for (int n = 0; n < 1000; ++n)
{
// pop some blocks, then add some more
int remove = 1 + (n * 17) % 8;
int add = (n * 23) % 123;
// save long term block weights we're about to remove
uint64_t old_ltbw[16], h0 = bc->get_db().height() - remove - 1;
for (int i = -2; i < remove; ++i)
{
old_ltbw[i + 2] = bc->get_db().get_block_long_term_weight(h0 + i);
}
for (int i = 0; i < remove; ++i)
{
cryptonote::block b;
std::vector<cryptonote::transaction> txs;
bc->get_db().pop_block(b, txs);
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
const uint64_t effective_median = bc->get_current_cumulative_block_weight_median();
const uint64_t effective_limit = bc->get_current_cumulative_block_weight_limit();
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
ASSERT_EQ(effective_median, bc->get_current_cumulative_block_weight_median());
ASSERT_EQ(effective_limit, bc->get_current_cumulative_block_weight_limit());
}
for (int i = 0; i < add; ++i)
{
lcg_seed = bc->get_db().height();
uint32_t r = lcg();
size_t w = bc->get_db().height() < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW ? CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5 : (r % bc->get_current_cumulative_block_weight_limit());
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, bc->get_db().height(), bc->get_db().height(), {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
const uint64_t effective_median = bc->get_current_cumulative_block_weight_median();
const uint64_t effective_limit = bc->get_current_cumulative_block_weight_limit();
ASSERT_TRUE(bc->update_next_cumulative_weight_limit());
ASSERT_EQ(effective_median, bc->get_current_cumulative_block_weight_median());
ASSERT_EQ(effective_limit, bc->get_current_cumulative_block_weight_limit());
}
// check the new values are the same as the old ones
for (int i = -2; i < std::min(add, remove); ++i)
{
ASSERT_EQ(bc->get_db().get_block_long_term_weight(h0 + i), old_ltbw[i + 2]);
}
}
}
TEST(long_term_block_weight, long_growth_spike_and_drop)
{
PREFIX(10);
uint64_t long_term_effective_median_block_weight;
// constant init
for (uint64_t h = 0; h < TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW; ++h)
{
size_t w = CRYPTONOTE_BLOCK_GRANTED_FULL_REWARD_ZONE_V5;
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit(&long_term_effective_median_block_weight));
}
ASSERT_EQ(long_term_effective_median_block_weight, 300000);
// slow 10% yearly for a year (scaled down by 100000 / TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW) -> 8% change
for (uint64_t h = 0; h < 365 * 720 * TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW / 100000; ++h)
{
//size_t w = bc->get_current_cumulative_block_weight_median() * rate;
float t = h / float(365 * 720 * TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW / 100000);
size_t w = 300000 + t * 30000;
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit(&long_term_effective_median_block_weight));
}
ASSERT_GT(long_term_effective_median_block_weight, 300000 * 1.07);
ASSERT_LT(long_term_effective_median_block_weight, 300000 * 1.09);
// spike over three weeks - does not move much
for (uint64_t h = 0; h < 21 * 720 * TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW / 100000; ++h)
{
size_t w = bc->get_current_cumulative_block_weight_limit();
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit(&long_term_effective_median_block_weight));
}
ASSERT_GT(long_term_effective_median_block_weight, 300000 * 1.07);
ASSERT_LT(long_term_effective_median_block_weight, 300000 * 1.09);
// drop - does not move much
for (uint64_t h = 0; h < 21 * 720 * TEST_LONG_TERM_BLOCK_WEIGHT_WINDOW / 100000; ++h)
{
size_t w = bc->get_current_cumulative_block_weight_median() * .25;
uint64_t ltw = bc->get_next_long_term_block_weight(w);
bc->get_db().add_block(cryptonote::block(), w, ltw, h, h, {});
ASSERT_TRUE(bc->update_next_cumulative_weight_limit(&long_term_effective_median_block_weight));
}
ASSERT_GT(long_term_effective_median_block_weight, 300000 * 1.07);
ASSERT_LT(long_term_effective_median_block_weight, 300000 * 1.09);
}