// Copyright (c) 2014-2018, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#pragma once
#include <iostream>
#include <stdint.h>
#include <boost/chrono.hpp>
#include <boost/regex.hpp>
#include "misc_language.h"
#include "common/perf_timer.h"
class performance_timer
{
public:
typedef boost::chrono::high_resolution_clock clock;
performance_timer()
{
m_base = clock::now();
}
void start()
{
m_start = clock::now();
}
int elapsed_ms()
{
clock::duration elapsed = clock::now() - m_start;
return static_cast<int>(boost::chrono::duration_cast<boost::chrono::milliseconds>(elapsed).count());
}
private:
clock::time_point m_base;
clock::time_point m_start;
};
struct Params
{
bool verbose;
bool stats;
unsigned loop_multiplier;
};
template <typename T>
class test_runner
{
public:
test_runner(const Params ¶ms)
: m_elapsed(0)
, m_params(params)
, m_per_call_timers(T::loop_count * params.loop_multiplier, {true})
{
}
bool run()
{
T test;
if (!test.init())
return false;
performance_timer timer;
timer.start();
warm_up();
if (m_params.verbose)
std::cout << "Warm up: " << timer.elapsed_ms() << " ms" << std::endl;
timer.start();
for (size_t i = 0; i < T::loop_count * m_params.loop_multiplier; ++i)
{
if (m_params.stats)
m_per_call_timers[i].resume();
if (!test.test())
return false;
if (m_params.stats)
m_per_call_timers[i].pause();
}
m_elapsed = timer.elapsed_ms();
return true;
}
int elapsed_time() const { return m_elapsed; }
int time_per_call(int scale = 1) const
{
static_assert(0 < T::loop_count, "T::loop_count must be greater than 0");
return m_elapsed * scale / (T::loop_count * m_params.loop_multiplier);
}
uint64_t per_call_min() const
{
uint64_t v = std::numeric_limits<uint64_t>::max();
for (const auto &pt: m_per_call_timers)
v = std::min(v, pt.value());
return v;
}
uint64_t per_call_max() const
{
uint64_t v = std::numeric_limits<uint64_t>::min();
for (const auto &pt: m_per_call_timers)
v = std::max(v, pt.value());
return v;
}
uint64_t per_call_mean() const
{
uint64_t v = 0;
for (const auto &pt: m_per_call_timers)
v += pt.value();
return v / m_per_call_timers.size();
}
uint64_t per_call_median() const
{
std::vector<uint64_t> values;
values.reserve(m_per_call_timers.size());
for (const auto &pt: m_per_call_timers)
values.push_back(pt.value());
return epee::misc_utils::median(values);
}
uint64_t per_call_stddev() const
{
if (m_per_call_timers.size() <= 1)
return 0;
const uint64_t mean = per_call_mean();
uint64_t acc = 0;
for (const auto &pt: m_per_call_timers)
{
int64_t dv = pt.value() - mean;
acc += dv * dv;
}
acc /= m_per_call_timers.size () - 1;
return sqrt(acc);
}
uint64_t min_time_ns() const { return tools::ticks_to_ns(per_call_min()); }
uint64_t max_time_ns() const { return tools::ticks_to_ns(per_call_max()); }
uint64_t median_time_ns() const { return tools::ticks_to_ns(per_call_median()); }
uint64_t standard_deviation_time_ns() const { return tools::ticks_to_ns(per_call_stddev()); }
private:
/**
* Warm up processor core, enabling turbo boost, etc.
*/
uint64_t warm_up()
{
const size_t warm_up_rounds = 1000 * 1000 * 1000;
m_warm_up = 0;
for (size_t i = 0; i < warm_up_rounds; ++i)
{
++m_warm_up;
}
return m_warm_up;
}
private:
volatile uint64_t m_warm_up; ///<! This field is intended for preclude compiler optimizations
int m_elapsed;
Params m_params;
std::vector<tools::PerformanceTimer> m_per_call_timers;
};
template <typename T>
void run_test(const std::string &filter, const Params ¶ms, const char* test_name)
{
boost::smatch match;
if (!filter.empty() && !boost::regex_match(std::string(test_name), match, boost::regex(filter)))
return;
test_runner<T> runner(params);
if (runner.run())
{
if (params.verbose)
{
std::cout << test_name << " - OK:\n";
std::cout << " loop count: " << T::loop_count * params.loop_multiplier << '\n';
std::cout << " elapsed: " << runner.elapsed_time() << " ms\n";
if (params.stats)
{
std::cout << " min: " << runner.min_time_ns() << " ns\n";
std::cout << " max: " << runner.max_time_ns() << " ns\n";
std::cout << " median: " << runner.median_time_ns() << " ns\n";
std::cout << " std dev: " << runner.standard_deviation_time_ns() << " ns\n";
}
}
else
{
std::cout << test_name << " (" << T::loop_count * params.loop_multiplier << " calls) - OK:";
}
const char *unit = "ms";
uint64_t scale = 1000000;
int time_per_call = runner.time_per_call();
if (time_per_call < 30000) {
time_per_call = runner.time_per_call(1000);
#ifdef _WIN32
unit = "\xb5s";
#else
unit = "µs";
#endif
scale = 1000;
}
std::cout << (params.verbose ? " time per call: " : " ") << time_per_call << " " << unit << "/call" << (params.verbose ? "\n" : "");
if (params.stats)
{
uint64_t min_ns = runner.min_time_ns() / scale;
uint64_t med_ns = runner.median_time_ns() / scale;
uint64_t stddev_ns = runner.standard_deviation_time_ns() / scale;
std::cout << " (min " << min_ns << " " << unit << ", median " << med_ns << " " << unit << ", std dev " << stddev_ns << " " << unit << ")";
}
std::cout << std::endl;
}
else
{
std::cout << test_name << " - FAILED" << std::endl;
}
}
#define QUOTEME(x) #x
#define TEST_PERFORMANCE0(filter, params, test_class) run_test< test_class >(filter, params, QUOTEME(test_class))
#define TEST_PERFORMANCE1(filter, params, test_class, a0) run_test< test_class<a0> >(filter, params, QUOTEME(test_class<a0>))
#define TEST_PERFORMANCE2(filter, params, test_class, a0, a1) run_test< test_class<a0, a1> >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ">")
#define TEST_PERFORMANCE3(filter, params, test_class, a0, a1, a2) run_test< test_class<a0, a1, a2> >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ">")
#define TEST_PERFORMANCE4(filter, params, test_class, a0, a1, a2, a3) run_test< test_class<a0, a1, a2, a3> >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ", " QUOTEME(a3) ">")
#define TEST_PERFORMANCE5(filter, params, test_class, a0, a1, a2, a3, a4) run_test< test_class<a0, a1, a2, a3, a4> >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ", " QUOTEME(a3) ", " QUOTEME(a4) ">")
#define TEST_PERFORMANCE6(filter, params, test_class, a0, a1, a2, a3, a4, a5) run_test< test_class<a0, a1, a2, a3, a4, a5> >(filter, params, QUOTEME(test_class) "<" QUOTEME(a0) ", " QUOTEME(a1) ", " QUOTEME(a2) ", " QUOTEME(a3) ", " QUOTEME(a4) ", " QUOTEME(a5) ">")