// Copyright (c) 2014-2018, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
/*! \file serialization.h
* \brief Simple DSL AAPI based on
*
* \detailed is_blob_type and has_free_serializer are
* both descriptors for dispatching on to the serialize function.
*
* The API itself defines a domain specific language via dirty macro
* hacks. Greenspun's tenth rule is very much in action throughout
* this entire code base.
*/
#pragma once
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <unordered_set>
#include <string>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/integral_constant.hpp>
/*! \struct is_blob_type
*
* \brief a descriptor for dispatching serialize
*/
template <class T>
struct is_blob_type { typedef boost::false_type type; };
/*! \struct has_free_serializer
*
* \brief a descriptor for dispatching serialize
*/
template <class T>
struct has_free_serializer { typedef boost::true_type type; };
/*! \struct is_basic_type
*
* \brief a descriptor for dispatching serialize
*/
template <class T>
struct is_basic_type { typedef boost::false_type type; };
template<typename F, typename S>
struct is_basic_type<std::pair<F,S>> { typedef boost::true_type type; };
template<>
struct is_basic_type<std::string> { typedef boost::true_type type; };
/*! \struct serializer
*
* \brief ... wouldn't a class be better?
*
* \detailed The logic behind serializing data. Places the archive
* data into the supplied parameter. This dispatches based on the
* supplied \a T template parameter's traits of is_blob_type or it is
* an integral (as defined by the is_integral trait). Depends on the
* \a Archive parameter to have overloaded the serialize_blob(T v,
* size_t size) and serialize_int(T v) base on which trait it
* applied. When the class has neither types, it falls to the
* overloaded method do_serialize(Archive ar) in T to do the work.
*/
template <class Archive, class T>
struct serializer{
static bool serialize(Archive &ar, T &v) {
return serialize(ar, v, typename boost::is_integral<T>::type(), typename is_blob_type<T>::type(), typename is_basic_type<T>::type());
}
template<typename A>
static bool serialize(Archive &ar, T &v, boost::false_type, boost::true_type, A a) {
ar.serialize_blob(&v, sizeof(v));
return true;
}
template<typename A>
static bool serialize(Archive &ar, T &v, boost::true_type, boost::false_type, A a) {
ar.serialize_int(v);
return true;
}
static bool serialize(Archive &ar, T &v, boost::false_type, boost::false_type, boost::false_type) {
//serialize_custom(ar, v, typename has_free_serializer<T>::type());
return v.do_serialize(ar);
}
static bool serialize(Archive &ar, T &v, boost::false_type, boost::false_type, boost::true_type) {
//serialize_custom(ar, v, typename has_free_serializer<T>::type());
return do_serialize(ar, v);
}
static void serialize_custom(Archive &ar, T &v, boost::true_type) {
}
};
/*! \fn do_serialize(Archive &ar, T &v)
*
* \brief just calls the serialize function defined for ar and v...
*/
template <class Archive, class T>
inline bool do_serialize(Archive &ar, T &v)
{
return ::serializer<Archive, T>::serialize(ar, v);
}
template <class Archive>
inline bool do_serialize(Archive &ar, bool &v)
{
ar.serialize_blob(&v, sizeof(v));
return true;
}
// Never used in the code base
// #ifndef __GNUC__
// #ifndef constexpr
// #define constexpr
// #endif
// #endif
/* the following add a trait to a set and define the serialization DSL*/
/*! \macro BLOB_SERIALIZER
*
* \brief makes the type have a blob serializer trait defined
*/
#define BLOB_SERIALIZER(T) \
template<> \
struct is_blob_type<T> { \
typedef boost::true_type type; \
}
/*! \macro FREE_SERIALIZER
*
* \brief adds the has_free_serializer to the type
*/
#define FREE_SERIALIZER(T) \
template<> \
struct has_free_serializer<T> { \
typedef boost::true_type type; \
}
/*! \macro VARIANT_TAG
*
* \brief Adds the tag \tag to the \a Archive of \a Type
*/
#define VARIANT_TAG(Archive, Type, Tag) \
template <bool W> \
struct variant_serialization_traits<Archive<W>, Type> { \
static inline typename Archive<W>::variant_tag_type get_tag() { \
return Tag; \
} \
}
/*! \macro BEGIN_SERIALIZE
*
* \brief Begins the environment of the DSL
* \detailed for describing how to
* serialize an of an archive type
*/
#define BEGIN_SERIALIZE() \
template <bool W, template <bool> class Archive> \
bool do_serialize(Archive<W> &ar) {
/*! \macro BEGIN_SERIALIZE_OBJECT
*
* \brief begins the environment of the DSL
* \detailed for described the serialization of an object
*/
#define BEGIN_SERIALIZE_OBJECT() \
template <bool W, template <bool> class Archive> \
bool do_serialize(Archive<W> &ar) { \
ar.begin_object(); \
bool r = do_serialize_object(ar); \
ar.end_object(); \
return r; \
} \
template <bool W, template <bool> class Archive> \
bool do_serialize_object(Archive<W> &ar){
/*! \macro PREPARE_CUSTOM_VECTOR_SERIALIZATION
*/
#define PREPARE_CUSTOM_VECTOR_SERIALIZATION(size, vec) \
::serialization::detail::prepare_custom_vector_serialization(size, vec, typename Archive<W>::is_saving())
/*! \macro PREPARE_CUSTOM_DEQUE_SERIALIZATION
*/
#define PREPARE_CUSTOM_DEQUE_SERIALIZATION(size, vec) \
::serialization::detail::prepare_custom_deque_serialization(size, vec, typename Archive<W>::is_saving())
/*! \macro END_SERIALIZE
* \brief self-explanatory
*/
#define END_SERIALIZE() \
return true; \
}
/*! \macro VALUE(f)
* \brief the same as FIELD(f)
*/
#define VALUE(f) \
do { \
ar.tag(#f); \
bool r = ::do_serialize(ar, f); \
if (!r || !ar.stream().good()) return false; \
} while(0);
/*! \macro FIELD_N(t,f)
*
* \brief serializes a field \a f tagged \a t
*/
#define FIELD_N(t, f) \
do { \
ar.tag(t); \
bool r = ::do_serialize(ar, f); \
if (!r || !ar.stream().good()) return false; \
} while(0);
/*! \macro FIELD(f)
*
* \brief tags the field with the variable name and then serializes it
*/
#define FIELD(f) \
do { \
ar.tag(#f); \
bool r = ::do_serialize(ar, f); \
if (!r || !ar.stream().good()) return false; \
} while(0);
/*! \macro FIELDS(f)
*
* \brief does not add a tag to the serialized value
*/
#define FIELDS(f) \
do { \
bool r = ::do_serialize(ar, f); \
if (!r || !ar.stream().good()) return false; \
} while(0);
/*! \macro VARINT_FIELD(f)
* \brief tags and serializes the varint \a f
*/
#define VARINT_FIELD(f) \
do { \
ar.tag(#f); \
ar.serialize_varint(f); \
if (!ar.stream().good()) return false; \
} while(0);
/*! \macro VARINT_FIELD_N(t, f)
*
* \brief tags (as \a t) and serializes the varint \a f
*/
#define VARINT_FIELD_N(t, f) \
do { \
ar.tag(t); \
ar.serialize_varint(f); \
if (!ar.stream().good()) return false; \
} while(0);
namespace serialization {
/*! \namespace detail
*
* \brief declaration and default definition for the functions used the API
*
*/
namespace detail
{
/*! \fn prepare_custom_vector_serialization
*
* prepares the vector /vec for serialization
*/
template <typename T>
void prepare_custom_vector_serialization(size_t size, std::vector<T>& vec, const boost::mpl::bool_<true>& /*is_saving*/)
{
}
template <typename T>
void prepare_custom_vector_serialization(size_t size, std::vector<T>& vec, const boost::mpl::bool_<false>& /*is_saving*/)
{
vec.resize(size);
}
template <typename T>
void prepare_custom_deque_serialization(size_t size, std::deque<T>& vec, const boost::mpl::bool_<true>& /*is_saving*/)
{
}
template <typename T>
void prepare_custom_deque_serialization(size_t size, std::deque<T>& vec, const boost::mpl::bool_<false>& /*is_saving*/)
{
vec.resize(size);
}
/*! \fn do_check_stream_state
*
* \brief self explanatory
*/
template<class Stream>
bool do_check_stream_state(Stream& s, boost::mpl::bool_<true>)
{
return s.good();
}
/*! \fn do_check_stream_state
*
* \brief self explanatory
*
* \detailed Also checks to make sure that the stream is not at EOF
*/
template<class Stream>
bool do_check_stream_state(Stream& s, boost::mpl::bool_<false>)
{
bool result = false;
if (s.good())
{
std::ios_base::iostate state = s.rdstate();
result = EOF == s.peek();
s.clear(state);
}
return result;
}
}
/*! \fn check_stream_state
*
* \brief calls detail::do_check_stream_state for ar
*/
template<class Archive>
bool check_stream_state(Archive& ar)
{
return detail::do_check_stream_state(ar.stream(), typename Archive::is_saving());
}
/*! \fn serialize
*
* \brief serializes \a v into \a ar
*/
template <class Archive, class T>
inline bool serialize(Archive &ar, T &v)
{
bool r = do_serialize(ar, v);
return r && check_stream_state(ar);
}
}