aboutsummaryrefslogblamecommitdiff
path: root/src/ringct/rctOps.cpp
blob: 6853becb91c3b1f01b1361fd29cadcfea69935a1 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741




































































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                                                                                                        
// Copyright (c) 2016, Monero Research Labs
//
// Author: Shen Noether <shen.noether@gmx.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "rctOps.h"
using namespace crypto;
using namespace std;

namespace rct {

    //Various key initialization functions

    //Creates a zero scalar
    void zero(key &zero) {
        int i = 0;
        for (i = 0; i < 32; i++) {
            zero[i] = (unsigned char)(0x00);
        }
    }

    //Creates a zero scalar
    key zero() {
        return{ {0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00  } };
    }

    //Creates a zero elliptic curve point
    void identity(key &Id) {
        int i = 0;
        Id[0] = (unsigned char)(0x01);
        for (i = 1; i < 32; i++) {
            Id[i] = (unsigned char)(0x00);
        }
    }

    //Creates a zero elliptic curve point
    key identity() {
        key Id;
        int i = 0;
        Id[0] = (unsigned char)(0x01);
        for (i = 1; i < 32; i++) {
            Id[i] = (unsigned char)(0x00);
        }
        return Id;
    }

    //copies a scalar or point
    void copy(key &AA, const key &A) {
        int i = 0;
        for (i = 0; i < 32; i++) {
            AA[i] = A.bytes[i];
        }
    }

    //copies a scalar or point
    key copy(const key &A) {
        int i = 0;
        key AA;
        for (i = 0; i < 32; i++) {
            AA[i] = A.bytes[i];
        }
        return AA;
    }


    //initializes a key matrix;
    //first parameter is rows,
    //second is columns
    keyM keyMInit(int rows, int cols) {
        keyM rv(cols);
        int i = 0;
        for (i = 0 ; i < cols ; i++) {
            rv[i] = keyV(rows);
        }
        return rv;
    }




    //Various key generation functions

    //generates a random scalar which can be used as a secret key or mask
    void skGen(key &sk) {
        unsigned char tmp[64];
        generate_random_bytes(64, tmp);
        memcpy(sk.bytes, tmp, 32);
        sc_reduce32(sk.bytes);
    }

    //generates a random scalar which can be used as a secret key or mask
    key skGen() {
        unsigned char tmp[64];
        generate_random_bytes(64, tmp);
        key sk;
        memcpy(sk.bytes, tmp, 32);
        sc_reduce32(sk.bytes);
        return sk;
    }

    //Generates a vector of secret key
    //Mainly used in testing
    keyV skvGen(int rows ) {
        keyV rv(rows);
        int i = 0;
        for (i = 0 ; i < rows ; i++) {
            skGen(rv[i]);
        }
        return rv;
    }

    //generates a random curve point (for testing)
    key  pkGen() {
        key sk = skGen();
        key pk = scalarmultBase(sk);
        return pk;
    }

    //generates a random secret and corresponding public key
    void skpkGen(key &sk, key &pk) {
        skGen(sk);
        scalarmultBase(pk, sk);
    }

    //generates a random secret and corresponding public key
    tuple<key, key>  skpkGen() {
        key sk = skGen();
        key pk = scalarmultBase(sk);
        return make_tuple(sk, pk);
    }

    //generates a <secret , public> / Pedersen commitment to the amount
    tuple<ctkey, ctkey> ctskpkGen(xmr_amount amount) {
        ctkey sk, pk;
        skpkGen(sk.dest, pk.dest);
        skpkGen(sk.mask, pk.mask);
        key am = d2h(amount);
        key aH = scalarmultH(am);
        addKeys(pk.mask, pk.mask, aH);
        return make_tuple(sk, pk);
    }
    
    
    //generates a <secret , public> / Pedersen commitment but takes bH as input 
    tuple<ctkey, ctkey> ctskpkGen(key bH) {
        ctkey sk, pk;
        skpkGen(sk.dest, pk.dest);
        skpkGen(sk.mask, pk.mask);
        //key am = d2h(amount);
        //key aH = scalarmultH(am);
        addKeys(pk.mask, pk.mask, bH);
        return make_tuple(sk, pk);
    }
    
    //generates a random uint long long
    xmr_amount randXmrAmount(xmr_amount upperlimit) {
        return h2d(skGen()) % (upperlimit);
    }

    //Scalar multiplications of curve points

    //does a * G where a is a scalar and G is the curve basepoint
    void scalarmultBase(key &aG,const key &a) {
        ge_p3 point;
        sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand!
        ge_scalarmult_base(&point, aG.bytes);
        ge_p3_tobytes(aG.bytes, &point);
    }

    //does a * G where a is a scalar and G is the curve basepoint
    key scalarmultBase(const key & a) {
        ge_p3 point;
        key aG;
        sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand
        ge_scalarmult_base(&point, aG.bytes);
        ge_p3_tobytes(aG.bytes, &point);
        return aG;
    }

    //does a * P where a is a scalar and P is an arbitrary point
    void scalarmultKey(key & aP, const key &P, const key &a) {
        ge_p3 A;
        ge_p2 R;
        ge_frombytes_vartime(&A, P.bytes);
        ge_scalarmult(&R, a.bytes, &A);
        ge_tobytes(aP.bytes, &R);
    }

    //does a * P where a is a scalar and P is an arbitrary point
    key scalarmultKey(const key & P, const key & a) {
        ge_p3 A;
        ge_p2 R;
        ge_frombytes_vartime(&A, P.bytes);
        ge_scalarmult(&R, a.bytes, &A);
        key aP;
        ge_tobytes(aP.bytes, &R);
        return aP;
    }


    //Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint
    key scalarmultH(const key & a) {
        ge_p3 A;
        ge_p2 R;
        key Htmp = { {0x8b, 0x65, 0x59, 0x70, 0x15, 0x37, 0x99, 0xaf, 0x2a, 0xea, 0xdc, 0x9f, 0xf1, 0xad, 0xd0, 0xea, 0x6c, 0x72, 0x51, 0xd5, 0x41, 0x54, 0xcf, 0xa9, 0x2c, 0x17, 0x3a, 0x0d, 0xd3, 0x9c, 0x1f, 0x94} };
        ge_frombytes_vartime(&A, Htmp.bytes);
        ge_scalarmult(&R, a.bytes, &A);
        key aP;
        ge_tobytes(aP.bytes, &R);
        return aP;
    }

    //Curve addition / subtractions

    //for curve points: AB = A + B
    void addKeys(key &AB, const key &A, const key &B) {
        ge_p3 B2, A2;
        ge_frombytes_vartime(&B2, B.bytes);
        ge_frombytes_vartime(&A2, A.bytes);
        ge_cached tmp2;
        ge_p3_to_cached(&tmp2, &B2);
        ge_p1p1 tmp3;
        ge_add(&tmp3, &A2, &tmp2);
        ge_p1p1_to_p3(&A2, &tmp3);
        ge_p3_tobytes(AB.bytes, &A2);
    }


    //addKeys1
    //aGB = aG + B where a is a scalar, G is the basepoint, and B is a point
    void addKeys1(key &aGB, const key &a, const key & B) {
        key aG = scalarmultBase(a);
        addKeys(aGB, aG, B);
    }

    //addKeys2
    //aGbB = aG + bB where a, b are scalars, G is the basepoint and B is a point
    void addKeys2(key &aGbB, const key &a, const key &b, const key & B) {
        ge_p2 rv;
        ge_p3 B2;
        ge_frombytes_vartime(&B2, B.bytes);
        ge_double_scalarmult_base_vartime(&rv, b.bytes, &B2, a.bytes);
        ge_tobytes(aGbB.bytes, &rv);
    }

    //Does some precomputation to make addKeys3 more efficient
    // input B a curve point and output a ge_dsmp which has precomputation applied
    void precomp(ge_dsmp rv, const key & B) {
        ge_p3 B2;
        ge_frombytes_vartime(&B2, B.bytes);
        ge_dsm_precomp(rv, &B2);
    }

    //addKeys3
    //aAbB = a*A + b*B where a, b are scalars, A, B are curve points
    //B must be input after applying "precomp"
    void addKeys3(key &aAbB, const key &a, const key &A, const key &b, const ge_dsmp B) {
        ge_p2 rv;
        ge_p3 A2;
        ge_frombytes_vartime(&A2, A.bytes);
        ge_double_scalarmult_precomp_vartime(&rv, a.bytes, &A2, b.bytes, B);
        ge_tobytes(aAbB.bytes, &rv);
    }


    //subtract Keys (subtracts curve points)
    //AB = A - B where A, B are curve points
    void subKeys(key & AB, const key &A, const key &B) {
        ge_p3 B2, A2;
        ge_frombytes_vartime(&B2, B.bytes);
        ge_frombytes_vartime(&A2, A.bytes);
        ge_cached tmp2;
        ge_p3_to_cached(&tmp2, &B2);
        ge_p1p1 tmp3;
        ge_sub(&tmp3, &A2, &tmp2);
        ge_p1p1_to_p3(&A2, &tmp3);
        ge_p3_tobytes(AB.bytes, &A2);
    }

    //checks if A, B are equal as curve points
    //without doing curve operations
    bool equalKeys(const key & a, const key & b) {
        key eqk;
        sc_sub(eqk.bytes, cn_fast_hash(a).bytes, cn_fast_hash(b).bytes);
        if (sc_isnonzero(eqk.bytes) ) {
            //DP("eq bytes");
            //DP(eqk);
            return false;
        }
        return true;
    }

    //Hashing - cn_fast_hash
    //be careful these are also in crypto namespace
    //cn_fast_hash for arbitrary multiples of 32 bytes
    void cn_fast_hash(key &hash, const void * data, const std::size_t l) {
        uint8_t md2[32];
        int j = 0;
        keccak((uint8_t *)data, l, md2, 32);
        for (j = 0; j < 32; j++) {
            hash[j] = (unsigned char)md2[j];
        }
    }
    
    void hash_to_scalar(key &hash, const void * data, const std::size_t l) {
        cn_fast_hash(hash, data, l);
        sc_reduce32(hash.bytes);
    }

    //cn_fast_hash for a 32 byte key
    void cn_fast_hash(key & hash, const key & in) {
        uint8_t md2[32];
        int j = 0;
        keccak((uint8_t *)in.bytes, 32, md2, 32);
        for (j = 0; j < 32; j++) {
            hash[j] = (unsigned char)md2[j];
        }
    }
    
    void hash_to_scalar(key & hash, const key & in) {
        cn_fast_hash(hash, in);
        sc_reduce32(hash.bytes);
    }

    //cn_fast_hash for a 32 byte key
    key cn_fast_hash(const key & in) {
        uint8_t md2[32];
        int j = 0;
        key hash;
        keccak((uint8_t *)in.bytes, 32, md2, 32);
        for (j = 0; j < 32; j++) {
            hash[j] = (unsigned char)md2[j];
        }
        return hash;
    }
    
     key hash_to_scalar(const key & in) {
        key hash = cn_fast_hash(in);
        sc_reduce32(hash.bytes);
        return hash;
     }
    
    //cn_fast_hash for a 128 byte unsigned char
    key cn_fast_hash128(const void * in) {
        uint8_t md2[32];
        int j = 0;
        key hash;
        keccak((uint8_t *)in, 128, md2, 32);
        for (j = 0; j < 32; j++) {
            hash[j] = (unsigned char)md2[j];
        }
        return hash;
    }
    
    key hash_to_scalar128(const void * in) {
        key hash = cn_fast_hash128(in);
        sc_reduce32(hash.bytes);
        return hash;
    }
    
    //cn_fast_hash for multisig purpose
    //This takes the outputs and commitments
    //and hashes them into a 32 byte sized key
    key cn_fast_hash(ctkeyV PC) {
        key rv = identity();
        std::size_t l = (std::size_t)PC.size();
        size_t i = 0, j = 0;
        vector<char> m(l * 64);
        for (i = 0 ; i < l ; i++) {
            for (j = 0 ; j < 32 ; j++) {
                m[i * 64 + j] = PC[i].dest[j];
                m[i * 64 + 32 + j] = PC[i].mask[j];
            }
        }
        cn_fast_hash(rv, &m[0], l);
        return rv;
    }
    
    key hash_to_scalar(ctkeyV PC) {
        key rv = cn_fast_hash(PC);
        sc_reduce32(rv.bytes);
        return rv;
    }
    
    key hashToPointSimple(const key & hh) {
        key pointk;
        ge_p3 res;
        key h = cn_fast_hash(hh); 
        ge_frombytes_vartime(&res, h.bytes);
        ge_p3_tobytes(pointk.bytes, &res);
        return pointk;
    }    
    
    key hashToPoint(const key & hh) {
        key pointk;
        ge_p2 point;
        ge_p1p1 point2;
        ge_p3 res;
        key h = cn_fast_hash(hh); 
        ge_fromfe_frombytes_vartime(&point, h.bytes);
        ge_mul8(&point2, &point);
        ge_p1p1_to_p3(&res, &point2);        
        ge_p3_tobytes(pointk.bytes, &res);
        return pointk;
    }

void fe_mul(fe h,const fe f,const fe g)
{
    int32_t f0 = f[0];
    int32_t f1 = f[1];
    int32_t f2 = f[2];
    int32_t f3 = f[3];
    int32_t f4 = f[4];
    int32_t f5 = f[5];
    int32_t f6 = f[6];
    int32_t f7 = f[7];
    int32_t f8 = f[8];
    int32_t f9 = f[9];
    int32_t g0 = g[0];
    int32_t g1 = g[1];
    int32_t g2 = g[2];
    int32_t g3 = g[3];
    int32_t g4 = g[4];
    int32_t g5 = g[5];
    int32_t g6 = g[6];
    int32_t g7 = g[7];
    int32_t g8 = g[8];
    int32_t g9 = g[9];
    int32_t g1_19 = 19 * g1; /* 1.959375*2^29 */
    int32_t g2_19 = 19 * g2; /* 1.959375*2^30; still ok */
    int32_t g3_19 = 19 * g3;
    int32_t g4_19 = 19 * g4;
    int32_t g5_19 = 19 * g5;
    int32_t g6_19 = 19 * g6;
    int32_t g7_19 = 19 * g7;
    int32_t g8_19 = 19 * g8;
    int32_t g9_19 = 19 * g9;
    int32_t f1_2 = 2 * f1;
    int32_t f3_2 = 2 * f3;
    int32_t f5_2 = 2 * f5;
    int32_t f7_2 = 2 * f7;
    int32_t f9_2 = 2 * f9;
    int64_t f0g0    = f0   * (int64_t) g0;
    int64_t f0g1    = f0   * (int64_t) g1;
    int64_t f0g2    = f0   * (int64_t) g2;
    int64_t f0g3    = f0   * (int64_t) g3;
    int64_t f0g4    = f0   * (int64_t) g4;
    int64_t f0g5    = f0   * (int64_t) g5;
    int64_t f0g6    = f0   * (int64_t) g6;
    int64_t f0g7    = f0   * (int64_t) g7;
    int64_t f0g8    = f0   * (int64_t) g8;
    int64_t f0g9    = f0   * (int64_t) g9;
    int64_t f1g0    = f1   * (int64_t) g0;
    int64_t f1g1_2  = f1_2 * (int64_t) g1;
    int64_t f1g2    = f1   * (int64_t) g2;
    int64_t f1g3_2  = f1_2 * (int64_t) g3;
    int64_t f1g4    = f1   * (int64_t) g4;
    int64_t f1g5_2  = f1_2 * (int64_t) g5;
    int64_t f1g6    = f1   * (int64_t) g6;
    int64_t f1g7_2  = f1_2 * (int64_t) g7;
    int64_t f1g8    = f1   * (int64_t) g8;
    int64_t f1g9_38 = f1_2 * (int64_t) g9_19;
    int64_t f2g0    = f2   * (int64_t) g0;
    int64_t f2g1    = f2   * (int64_t) g1;
    int64_t f2g2    = f2   * (int64_t) g2;
    int64_t f2g3    = f2   * (int64_t) g3;
    int64_t f2g4    = f2   * (int64_t) g4;
    int64_t f2g5    = f2   * (int64_t) g5;
    int64_t f2g6    = f2   * (int64_t) g6;
    int64_t f2g7    = f2   * (int64_t) g7;
    int64_t f2g8_19 = f2   * (int64_t) g8_19;
    int64_t f2g9_19 = f2   * (int64_t) g9_19;
    int64_t f3g0    = f3   * (int64_t) g0;
    int64_t f3g1_2  = f3_2 * (int64_t) g1;
    int64_t f3g2    = f3   * (int64_t) g2;
    int64_t f3g3_2  = f3_2 * (int64_t) g3;
    int64_t f3g4    = f3   * (int64_t) g4;
    int64_t f3g5_2  = f3_2 * (int64_t) g5;
    int64_t f3g6    = f3   * (int64_t) g6;
    int64_t f3g7_38 = f3_2 * (int64_t) g7_19;
    int64_t f3g8_19 = f3   * (int64_t) g8_19;
    int64_t f3g9_38 = f3_2 * (int64_t) g9_19;
    int64_t f4g0    = f4   * (int64_t) g0;
    int64_t f4g1    = f4   * (int64_t) g1;
    int64_t f4g2    = f4   * (int64_t) g2;
    int64_t f4g3    = f4   * (int64_t) g3;
    int64_t f4g4    = f4   * (int64_t) g4;
    int64_t f4g5    = f4   * (int64_t) g5;
    int64_t f4g6_19 = f4   * (int64_t) g6_19;
    int64_t f4g7_19 = f4   * (int64_t) g7_19;
    int64_t f4g8_19 = f4   * (int64_t) g8_19;
    int64_t f4g9_19 = f4   * (int64_t) g9_19;
    int64_t f5g0    = f5   * (int64_t) g0;
    int64_t f5g1_2  = f5_2 * (int64_t) g1;
    int64_t f5g2    = f5   * (int64_t) g2;
    int64_t f5g3_2  = f5_2 * (int64_t) g3;
    int64_t f5g4    = f5   * (int64_t) g4;
    int64_t f5g5_38 = f5_2 * (int64_t) g5_19;
    int64_t f5g6_19 = f5   * (int64_t) g6_19;
    int64_t f5g7_38 = f5_2 * (int64_t) g7_19;
    int64_t f5g8_19 = f5   * (int64_t) g8_19;
    int64_t f5g9_38 = f5_2 * (int64_t) g9_19;
    int64_t f6g0    = f6   * (int64_t) g0;
    int64_t f6g1    = f6   * (int64_t) g1;
    int64_t f6g2    = f6   * (int64_t) g2;
    int64_t f6g3    = f6   * (int64_t) g3;
    int64_t f6g4_19 = f6   * (int64_t) g4_19;
    int64_t f6g5_19 = f6   * (int64_t) g5_19;
    int64_t f6g6_19 = f6   * (int64_t) g6_19;
    int64_t f6g7_19 = f6   * (int64_t) g7_19;
    int64_t f6g8_19 = f6   * (int64_t) g8_19;
    int64_t f6g9_19 = f6   * (int64_t) g9_19;
    int64_t f7g0    = f7   * (int64_t) g0;
    int64_t f7g1_2  = f7_2 * (int64_t) g1;
    int64_t f7g2    = f7   * (int64_t) g2;
    int64_t f7g3_38 = f7_2 * (int64_t) g3_19;
    int64_t f7g4_19 = f7   * (int64_t) g4_19;
    int64_t f7g5_38 = f7_2 * (int64_t) g5_19;
    int64_t f7g6_19 = f7   * (int64_t) g6_19;
    int64_t f7g7_38 = f7_2 * (int64_t) g7_19;
    int64_t f7g8_19 = f7   * (int64_t) g8_19;
    int64_t f7g9_38 = f7_2 * (int64_t) g9_19;
    int64_t f8g0    = f8   * (int64_t) g0;
    int64_t f8g1    = f8   * (int64_t) g1;
    int64_t f8g2_19 = f8   * (int64_t) g2_19;
    int64_t f8g3_19 = f8   * (int64_t) g3_19;
    int64_t f8g4_19 = f8   * (int64_t) g4_19;
    int64_t f8g5_19 = f8   * (int64_t) g5_19;
    int64_t f8g6_19 = f8   * (int64_t) g6_19;
    int64_t f8g7_19 = f8   * (int64_t) g7_19;
    int64_t f8g8_19 = f8   * (int64_t) g8_19;
    int64_t f8g9_19 = f8   * (int64_t) g9_19;
    int64_t f9g0    = f9   * (int64_t) g0;
    int64_t f9g1_38 = f9_2 * (int64_t) g1_19;
    int64_t f9g2_19 = f9   * (int64_t) g2_19;
    int64_t f9g3_38 = f9_2 * (int64_t) g3_19;
    int64_t f9g4_19 = f9   * (int64_t) g4_19;
    int64_t f9g5_38 = f9_2 * (int64_t) g5_19;
    int64_t f9g6_19 = f9   * (int64_t) g6_19;
    int64_t f9g7_38 = f9_2 * (int64_t) g7_19;
    int64_t f9g8_19 = f9   * (int64_t) g8_19;
    int64_t f9g9_38 = f9_2 * (int64_t) g9_19;
    int64_t h0 = f0g0+f1g9_38+f2g8_19+f3g7_38+f4g6_19+f5g5_38+f6g4_19+f7g3_38+f8g2_19+f9g1_38;
    int64_t h1 = f0g1+f1g0   +f2g9_19+f3g8_19+f4g7_19+f5g6_19+f6g5_19+f7g4_19+f8g3_19+f9g2_19;
    int64_t h2 = f0g2+f1g1_2 +f2g0   +f3g9_38+f4g8_19+f5g7_38+f6g6_19+f7g5_38+f8g4_19+f9g3_38;
    int64_t h3 = f0g3+f1g2   +f2g1   +f3g0   +f4g9_19+f5g8_19+f6g7_19+f7g6_19+f8g5_19+f9g4_19;
    int64_t h4 = f0g4+f1g3_2 +f2g2   +f3g1_2 +f4g0   +f5g9_38+f6g8_19+f7g7_38+f8g6_19+f9g5_38;
    int64_t h5 = f0g5+f1g4   +f2g3   +f3g2   +f4g1   +f5g0   +f6g9_19+f7g8_19+f8g7_19+f9g6_19;
    int64_t h6 = f0g6+f1g5_2 +f2g4   +f3g3_2 +f4g2   +f5g1_2 +f6g0   +f7g9_38+f8g8_19+f9g7_38;
    int64_t h7 = f0g7+f1g6   +f2g5   +f3g4   +f4g3   +f5g2   +f6g1   +f7g0   +f8g9_19+f9g8_19;
    int64_t h8 = f0g8+f1g7_2 +f2g6   +f3g5_2 +f4g4   +f5g3_2 +f6g2   +f7g1_2 +f8g0   +f9g9_38;
    int64_t h9 = f0g9+f1g8   +f2g7   +f3g6   +f4g5   +f5g4   +f6g3   +f7g2   +f8g1   +f9g0   ;
    int64_t carry0;
    int64_t carry1;
    int64_t carry2;
    int64_t carry3;
    int64_t carry4;
    int64_t carry5;
    int64_t carry6;
    int64_t carry7;
    int64_t carry8;
    int64_t carry9;

    /*
    |h0| <= (1.65*1.65*2^52*(1+19+19+19+19)+1.65*1.65*2^50*(38+38+38+38+38))
      i.e. |h0| <= 1.4*2^60; narrower ranges for h2, h4, h6, h8
    |h1| <= (1.65*1.65*2^51*(1+1+19+19+19+19+19+19+19+19))
      i.e. |h1| <= 1.7*2^59; narrower ranges for h3, h5, h7, h9
    */

    carry0 = (h0 + (int64_t) (1<<25)) >> 26;
    h1 += carry0;
    h0 -= carry0 << 26;
    carry4 = (h4 + (int64_t) (1<<25)) >> 26;
    h5 += carry4;
    h4 -= carry4 << 26;
    /* |h0| <= 2^25 */
    /* |h4| <= 2^25 */
    /* |h1| <= 1.71*2^59 */
    /* |h5| <= 1.71*2^59 */

    carry1 = (h1 + (int64_t) (1<<24)) >> 25;
    h2 += carry1;
    h1 -= carry1 << 25;
    carry5 = (h5 + (int64_t) (1<<24)) >> 25;
    h6 += carry5;
    h5 -= carry5 << 25;
    /* |h1| <= 2^24; from now on fits into int32 */
    /* |h5| <= 2^24; from now on fits into int32 */
    /* |h2| <= 1.41*2^60 */
    /* |h6| <= 1.41*2^60 */

    carry2 = (h2 + (int64_t) (1<<25)) >> 26;
    h3 += carry2;
    h2 -= carry2 << 26;
    carry6 = (h6 + (int64_t) (1<<25)) >> 26;
    h7 += carry6;
    h6 -= carry6 << 26;
    /* |h2| <= 2^25; from now on fits into int32 unchanged */
    /* |h6| <= 2^25; from now on fits into int32 unchanged */
    /* |h3| <= 1.71*2^59 */
    /* |h7| <= 1.71*2^59 */

    carry3 = (h3 + (int64_t) (1<<24)) >> 25;
    h4 += carry3;
    h3 -= carry3 << 25;
    carry7 = (h7 + (int64_t) (1<<24)) >> 25;
    h8 += carry7;
    h7 -= carry7 << 25;
    /* |h3| <= 2^24; from now on fits into int32 unchanged */
    /* |h7| <= 2^24; from now on fits into int32 unchanged */
    /* |h4| <= 1.72*2^34 */
    /* |h8| <= 1.41*2^60 */

    carry4 = (h4 + (int64_t) (1<<25)) >> 26;
    h5 += carry4;
    h4 -= carry4 << 26;
    carry8 = (h8 + (int64_t) (1<<25)) >> 26;
    h9 += carry8;
    h8 -= carry8 << 26;
    /* |h4| <= 2^25; from now on fits into int32 unchanged */
    /* |h8| <= 2^25; from now on fits into int32 unchanged */
    /* |h5| <= 1.01*2^24 */
    /* |h9| <= 1.71*2^59 */

    carry9 = (h9 + (int64_t) (1<<24)) >> 25;
    h0 += carry9 * 19;
    h9 -= carry9 << 25;
    /* |h9| <= 2^24; from now on fits into int32 unchanged */
    /* |h0| <= 1.1*2^39 */

    carry0 = (h0 + (int64_t) (1<<25)) >> 26;
    h1 += carry0;
    h0 -= carry0 << 26;
    /* |h0| <= 2^25; from now on fits into int32 unchanged */
    /* |h1| <= 1.01*2^24 */

    h[0] = h0;
    h[1] = h1;
    h[2] = h2;
    h[3] = h3;
    h[4] = h4;
    h[5] = h5;
    h[6] = h6;
    h[7] = h7;
    h[8] = h8;
    h[9] = h9;
}



void ge_tobytes2(unsigned char *s,const ge_p2 *h)
{
    fe recip;
    fe x;
    fe y;
    fe_invert(recip,h->Z);
    fe_mul(x,h->X,recip);
    fe_mul(y,h->Y,recip);


    fe_tobytes(s,y);
}


    key hashToPoint2(const key & hh) {
        key pointk;
        ge_p2 point;
        key h = cn_fast_hash(hh); 
        ge_fromfe_frombytes_vartime(&point, h.bytes);
        ge_tobytes2(pointk.bytes, &point);
        return pointk;
    }

    
    void hashToPoint(key & pointk, const key & hh) {
        ge_p2 point;
        ge_p1p1 point2;
        ge_p3 res;
        key h = cn_fast_hash(hh); 
        ge_fromfe_frombytes_vartime(&point, h.bytes);
        ge_mul8(&point2, &point);
        ge_p1p1_to_p3(&res, &point2);        
        ge_p3_tobytes(pointk.bytes, &res);
    }    

    //sums a vector of curve points (for scalars use sc_add)
    void sumKeys(key & Csum, const keyV &  Cis) {
        identity(Csum);
        size_t i = 0;
        for (i = 0; i < Cis.size(); i++) {
            addKeys(Csum, Csum, Cis[i]);
        }
    }

    //Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a
    // where C= aG + bH
    void ecdhEncode(ecdhTuple & unmasked, const key & receiverPk) {
        key esk;
        //compute shared secret
        skpkGen(esk, unmasked.senderPk);
        key sharedSec1 = hash_to_scalar(scalarmultKey(receiverPk, esk));
        key sharedSec2 = hash_to_scalar(sharedSec1);
        //encode
        sc_add(unmasked.mask.bytes, unmasked.mask.bytes, sharedSec1.bytes);
        sc_add(unmasked.amount.bytes, unmasked.amount.bytes, sharedSec2.bytes);
    }
    void ecdhDecode(ecdhTuple & masked, const key & receiverSk) {
        //compute shared secret
        key sharedSec1 = hash_to_scalar(scalarmultKey(masked.senderPk, receiverSk));
        key sharedSec2 = hash_to_scalar(sharedSec1);
        //encode
        sc_sub(masked.mask.bytes, masked.mask.bytes, sharedSec1.bytes);
        sc_sub(masked.amount.bytes, masked.amount.bytes, sharedSec2.bytes);
    }
}