// Copyright (c) 2014-2019, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#pragma once
#include "blobdatatype.h"
#include "cryptonote_basic_impl.h"
#include "tx_extra.h"
#include "account.h"
#include "subaddress_index.h"
#include "include_base_utils.h"
#include "crypto/crypto.h"
#include "crypto/hash.h"
#include <unordered_map>
#include <boost/multiprecision/cpp_int.hpp>
namespace epee
{
class wipeable_string;
}
namespace cryptonote
{
//---------------------------------------------------------------
void get_transaction_prefix_hash(const transaction_prefix& tx, crypto::hash& h, hw::device &hwdev);
crypto::hash get_transaction_prefix_hash(const transaction_prefix& tx, hw::device &hwdev);
void get_transaction_prefix_hash(const transaction_prefix& tx, crypto::hash& h);
crypto::hash get_transaction_prefix_hash(const transaction_prefix& tx);
bool parse_and_validate_tx_prefix_from_blob(const blobdata& tx_blob, transaction_prefix& tx);
bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx, crypto::hash& tx_hash, crypto::hash& tx_prefix_hash);
bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx, crypto::hash& tx_hash);
bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx);
bool parse_and_validate_tx_base_from_blob(const blobdata& tx_blob, transaction& tx);
bool is_v1_tx(const blobdata_ref& tx_blob);
bool is_v1_tx(const blobdata& tx_blob);
template<typename T>
bool find_tx_extra_field_by_type(const std::vector<tx_extra_field>& tx_extra_fields, T& field, size_t index = 0)
{
auto it = std::find_if(tx_extra_fields.begin(), tx_extra_fields.end(), [&index](const tx_extra_field& f) { return typeid(T) == f.type() && !index--; });
if(tx_extra_fields.end() == it)
return false;
field = boost::get<T>(*it);
return true;
}
bool parse_tx_extra(const std::vector<uint8_t>& tx_extra, std::vector<tx_extra_field>& tx_extra_fields);
bool sort_tx_extra(const std::vector<uint8_t>& tx_extra, std::vector<uint8_t> &sorted_tx_extra, bool allow_partial = false);
crypto::public_key get_tx_pub_key_from_extra(const std::vector<uint8_t>& tx_extra, size_t pk_index = 0);
crypto::public_key get_tx_pub_key_from_extra(const transaction_prefix& tx, size_t pk_index = 0);
crypto::public_key get_tx_pub_key_from_extra(const transaction& tx, size_t pk_index = 0);
bool add_tx_pub_key_to_extra(transaction& tx, const crypto::public_key& tx_pub_key);
bool add_tx_pub_key_to_extra(transaction_prefix& tx, const crypto::public_key& tx_pub_key);
bool add_tx_pub_key_to_extra(std::vector<uint8_t>& tx_extra, const crypto::public_key& tx_pub_key);
std::vector<crypto::public_key> get_additional_tx_pub_keys_from_extra(const std::vector<uint8_t>& tx_extra);
std::vector<crypto::public_key> get_additional_tx_pub_keys_from_extra(const transaction_prefix& tx);
bool add_additional_tx_pub_keys_to_extra(std::vector<uint8_t>& tx_extra, const std::vector<crypto::public_key>& additional_pub_keys);
bool add_extra_nonce_to_tx_extra(std::vector<uint8_t>& tx_extra, const blobdata& extra_nonce);
bool remove_field_from_tx_extra(std::vector<uint8_t>& tx_extra, const std::type_info &type);
void set_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash& payment_id);
void set_encrypted_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash8& payment_id);
bool get_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash& payment_id);
bool get_encrypted_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash8& payment_id);
bool is_out_to_acc(const account_keys& acc, const txout_to_key& out_key, const crypto::public_key& tx_pub_key, const std::vector<crypto::public_key>& additional_tx_public_keys, size_t output_index);
struct subaddress_receive_info
{
subaddress_index index;
crypto::key_derivation derivation;
};
boost::optional<subaddress_receive_info> is_out_to_acc_precomp(const std::unordered_map<crypto::public_key, subaddress_index>& subaddresses, const crypto::public_key& out_key, const crypto::key_derivation& derivation, const std::vector<crypto::key_derivation>& additional_derivations, size_t output_index, hw::device &hwdev);
bool lookup_acc_outs(const account_keys& acc, const transaction& tx, const crypto::public_key& tx_pub_key, const std::vector<crypto::public_key>& additional_tx_public_keys, std::vector<size_t>& outs, uint64_t& money_transfered);
bool lookup_acc_outs(const account_keys& acc, const transaction& tx, std::vector<size_t>& outs, uint64_t& money_transfered);
bool get_tx_fee(const transaction& tx, uint64_t & fee);
uint64_t get_tx_fee(const transaction& tx);
bool generate_key_image_helper(const account_keys& ack, const std::unordered_map<crypto::public_key, subaddress_index>& subaddresses, const crypto::public_key& out_key, const crypto::public_key& tx_public_key, const std::vector<crypto::public_key>& additional_tx_public_keys, size_t real_output_index, keypair& in_ephemeral, crypto::key_image& ki, hw::device &hwdev);
bool generate_key_image_helper_precomp(const account_keys& ack, const crypto::public_key& out_key, const crypto::key_derivation& recv_derivation, size_t real_output_index, const subaddress_index& received_index, keypair& in_ephemeral, crypto::key_image& ki, hw::device &hwdev);
void get_blob_hash(const blobdata& blob, crypto::hash& res);
void get_blob_hash(const epee::span<const char>& blob, crypto::hash& res);
crypto::hash get_blob_hash(const blobdata& blob);
crypto::hash get_blob_hash(const epee::span<const char>& blob);
std::string short_hash_str(const crypto::hash& h);
crypto::hash get_transaction_hash(const transaction& t);
bool get_transaction_hash(const transaction& t, crypto::hash& res);
bool get_transaction_hash(const transaction& t, crypto::hash& res, size_t& blob_size);
bool get_transaction_hash(const transaction& t, crypto::hash& res, size_t* blob_size);
bool calculate_transaction_prunable_hash(const transaction& t, const cryptonote::blobdata *blob, crypto::hash& res);
crypto::hash get_transaction_prunable_hash(const transaction& t, const cryptonote::blobdata *blob = NULL);
bool calculate_transaction_hash(const transaction& t, crypto::hash& res, size_t* blob_size);
crypto::hash get_pruned_transaction_hash(const transaction& t, const crypto::hash &pruned_data_hash);
blobdata get_block_hashing_blob(const block& b);
bool calculate_block_hash(const block& b, crypto::hash& res, const blobdata *blob = NULL);
bool get_block_hash(const block& b, crypto::hash& res);
crypto::hash get_block_hash(const block& b);
bool parse_and_validate_block_from_blob(const blobdata& b_blob, block& b, crypto::hash *block_hash);
bool parse_and_validate_block_from_blob(const blobdata& b_blob, block& b);
bool parse_and_validate_block_from_blob(const blobdata& b_blob, block& b, crypto::hash &block_hash);
bool get_inputs_money_amount(const transaction& tx, uint64_t& money);
uint64_t get_outs_money_amount(const transaction& tx);
bool check_inputs_types_supported(const transaction& tx);
bool check_outs_valid(const transaction& tx);
bool parse_amount(uint64_t& amount, const std::string& str_amount);
uint64_t get_transaction_weight(const transaction &tx);
uint64_t get_transaction_weight(const transaction &tx, size_t blob_size);
uint64_t get_pruned_transaction_weight(const transaction &tx);
bool check_money_overflow(const transaction& tx);
bool check_outs_overflow(const transaction& tx);
bool check_inputs_overflow(const transaction& tx);
uint64_t get_block_height(const block& b);
std::vector<uint64_t> relative_output_offsets_to_absolute(const std::vector<uint64_t>& off);
std::vector<uint64_t> absolute_output_offsets_to_relative(const std::vector<uint64_t>& off);
void set_default_decimal_point(unsigned int decimal_point = CRYPTONOTE_DISPLAY_DECIMAL_POINT);
unsigned int get_default_decimal_point();
std::string get_unit(unsigned int decimal_point = -1);
std::string print_money(uint64_t amount, unsigned int decimal_point = -1);
std::string print_money(const boost::multiprecision::uint128_t &amount, unsigned int decimal_point = -1);
//---------------------------------------------------------------
template<class t_object>
bool t_serializable_object_from_blob(t_object& to, const blobdata& b_blob)
{
std::stringstream ss;
ss << b_blob;
binary_archive<false> ba(ss);
bool r = ::serialization::serialize(ba, to);
return r;
}
//---------------------------------------------------------------
template<class t_object>
bool t_serializable_object_to_blob(const t_object& to, blobdata& b_blob)
{
std::stringstream ss;
binary_archive<true> ba(ss);
bool r = ::serialization::serialize(ba, const_cast<t_object&>(to));
b_blob = ss.str();
return r;
}
//---------------------------------------------------------------
template<class t_object>
blobdata t_serializable_object_to_blob(const t_object& to)
{
blobdata b;
t_serializable_object_to_blob(to, b);
return b;
}
//---------------------------------------------------------------
template<class t_object>
bool get_object_hash(const t_object& o, crypto::hash& res)
{
get_blob_hash(t_serializable_object_to_blob(o), res);
return true;
}
//---------------------------------------------------------------
template<class t_object>
size_t get_object_blobsize(const t_object& o)
{
blobdata b = t_serializable_object_to_blob(o);
return b.size();
}
//---------------------------------------------------------------
template<class t_object>
bool get_object_hash(const t_object& o, crypto::hash& res, size_t& blob_size)
{
blobdata bl = t_serializable_object_to_blob(o);
blob_size = bl.size();
get_blob_hash(bl, res);
return true;
}
//---------------------------------------------------------------
template <typename T>
std::string obj_to_json_str(T& obj)
{
std::stringstream ss;
json_archive<true> ar(ss, true);
bool r = ::serialization::serialize(ar, obj);
CHECK_AND_ASSERT_MES(r, "", "obj_to_json_str failed: serialization::serialize returned false");
return ss.str();
}
//---------------------------------------------------------------
// 62387455827 -> 455827 + 7000000 + 80000000 + 300000000 + 2000000000 + 60000000000, where 455827 <= dust_threshold
template<typename chunk_handler_t, typename dust_handler_t>
void decompose_amount_into_digits(uint64_t amount, uint64_t dust_threshold, const chunk_handler_t& chunk_handler, const dust_handler_t& dust_handler)
{
if (0 == amount)
{
return;
}
bool is_dust_handled = false;
uint64_t dust = 0;
uint64_t order = 1;
while (0 != amount)
{
uint64_t chunk = (amount % 10) * order;
amount /= 10;
order *= 10;
if (dust + chunk <= dust_threshold)
{
dust += chunk;
}
else
{
if (!is_dust_handled && 0 != dust)
{
dust_handler(dust);
is_dust_handled = true;
}
if (0 != chunk)
{
chunk_handler(chunk);
}
}
}
if (!is_dust_handled && 0 != dust)
{
dust_handler(dust);
}
}
//---------------------------------------------------------------
blobdata block_to_blob(const block& b);
bool block_to_blob(const block& b, blobdata& b_blob);
blobdata tx_to_blob(const transaction& b);
bool tx_to_blob(const transaction& b, blobdata& b_blob);
void get_tx_tree_hash(const std::vector<crypto::hash>& tx_hashes, crypto::hash& h);
crypto::hash get_tx_tree_hash(const std::vector<crypto::hash>& tx_hashes);
crypto::hash get_tx_tree_hash(const block& b);
bool is_valid_decomposed_amount(uint64_t amount);
void get_hash_stats(uint64_t &tx_hashes_calculated, uint64_t &tx_hashes_cached, uint64_t &block_hashes_calculated, uint64_t & block_hashes_cached);
crypto::secret_key encrypt_key(crypto::secret_key key, const epee::wipeable_string &passphrase);
crypto::secret_key decrypt_key(crypto::secret_key key, const epee::wipeable_string &passphrase);
#define CHECKED_GET_SPECIFIC_VARIANT(variant_var, specific_type, variable_name, fail_return_val) \
CHECK_AND_ASSERT_MES(variant_var.type() == typeid(specific_type), fail_return_val, "wrong variant type: " << variant_var.type().name() << ", expected " << typeid(specific_type).name()); \
specific_type& variable_name = boost::get<specific_type>(variant_var);
}