aboutsummaryrefslogblamecommitdiff
path: root/src/crypto/slow-hash.c
blob: 679edf7f9dbd25987bdaf7cb043460dbd6c5eac1 (plain) (tree)
1
                                              



























                                                                                          









                            
                       


                                                                   

                      
                     
                   
                    




                                           







                                                   

                      
                     





                                                   
 







                             
                                                  

                                
                          

                                                       
                                             
 

                                 


                                                                           


                                             
                                               
      
     
                       
                                                                                          


                                             





                                                  

  
                                                                            






                                                                                       


















                                                  
 


                                                                                          











                                     



                                 



                                            
                    
     
            



                           

                                   

      
 



                                                              



                                                           

 




                                                                          









                                                    

 


























                                                             







                                                                               





                                                                                                                




                                                                         







































                                                                           
   
                                                                                                







                                                                                                

                                                                                   





                                                                                      























                                                                            
   












                                                                                                                      

                                                                                                    

                                   
                           
              



















                                                              
                                             













                                                                      
 















                                                                                      











                                                                                       

                                   


                        
                                             



                                                                                  
                                              


                                                      

                                                                     
      










                                              



                                                              








                               
                                             







                                                   

 






















                                                                                       


                                                               

                                                
                                                                                   

   

                                                              
                                                                                                            
 



                                 
                                   

                       
 
                
                       
                      
                                
 




                                                                             



                                                                   

                                                                                                           


                                             
                                                                               


                                          

              
                                                

                                                    

                                                                        



         

                                                                


                                                    
                                                                                                                
 
                                                                        







                                                            




                                                                                      
                                 
                                                                           
                                                                   
              
     



                                          










                                                                                 

     



                                                                                         
                                             

              
                                                     

                                                    

                                                                                                        
         
     

        
                                                                     



                                                    

                                                                                                                

             
                                          
     
 




                                                                          

       


                                                       
 
 





























































































































































































                                                                                                        


                                        











                                                                                     














































































































































                                                                                                                  
      
// Copyright (c) 2014-2015, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// 
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers

#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>

#include "common/int-util.h"
#include "hash-ops.h"
#include "oaes_lib.h"

#if defined(__x86_64__)
// Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI
// Fall back to more portable code is down at the bottom

#include <emmintrin.h>

#if defined(_MSC_VER)
#include <intrin.h>
#include <windows.h>
#define STATIC
#define INLINE __inline
#if !defined(RDATA_ALIGN16)
#define RDATA_ALIGN16 __declspec(align(16))
#endif
#elif defined(__MINGW32__)
#include <intrin.h>
#include <windows.h>
#define STATIC static
#define INLINE inline
#if !defined(RDATA_ALIGN16)
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
#endif
#else
#include <wmmintrin.h>
#include <sys/mman.h>
#define STATIC static
#define INLINE inline
#if !defined(RDATA_ALIGN16)
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
#endif
#endif

#if defined(__INTEL_COMPILER)
#define ASM __asm__
#elif !defined(_MSC_VER)
#define ASM __asm__
#else
#define ASM __asm
#endif

#define MEMORY         (1 << 21) // 2MB scratchpad
#define ITER           (1 << 20)
#define AES_BLOCK_SIZE  16
#define AES_KEY_SIZE    32
#define INIT_SIZE_BLK   8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)

#define U64(x) ((uint64_t *) (x))
#define R128(x) ((__m128i *) (x))

#define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4)
#if defined(_MSC_VER)
#if !defined(_WIN64)
#define __mul() lo = mul128(c[0], b[0], &hi);
#else
#define __mul() lo = _umul128(c[0], b[0], &hi);
#endif
#else
#if defined(__x86_64__)
#define __mul() ASM("mulq %3\n\t" : "=d"(hi), "=a"(lo) : "%a" (c[0]), "rm" (b[0]) : "cc");
#else
#define __mul() lo = mul128(c[0], b[0], &hi);
#endif
#endif

#define pre_aes() \
    j = state_index(a); \
	_c = _mm_load_si128(R128(&hp_state[j])); \
	_a = _mm_load_si128(R128(a)); \

/*
 * An SSE-optimized implementation of the second half of CryptoNight step 3.
 * After using AES to mix a scratchpad value into _c (done by the caller), 
 * this macro xors it with _b and stores the result back to the same index (j) that it 
 * loaded the scratchpad value from.  It then performs a second random memory
 * read/write from the scratchpad, but this time mixes the values using a 64
 * bit multiply.
 * This code is based upon an optimized implementation by dga.
 */
#define post_aes() \
	_mm_store_si128(R128(c), _c); \
	_b = _mm_xor_si128(_b, _c); \
	_mm_store_si128(R128(&hp_state[j]), _b); \
	j = state_index(c); \
	p = U64(&hp_state[j]); \
	b[0] = p[0]; b[1] = p[1]; \
	__mul(); \
	a[0] += hi; a[1] += lo; \
	p = U64(&hp_state[j]); \
	p[0] = a[0];  p[1] = a[1]; \
	a[0] ^= b[0]; a[1] ^= b[1]; \
	_b = _c; \
 
#if defined(_MSC_VER)
#define THREADV __declspec(thread)
#else
#define THREADV __thread
#endif

extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);

#pragma pack(push, 1)
union cn_slow_hash_state
{
    union hash_state hs;
    struct
    {
        uint8_t k[64];
        uint8_t init[INIT_SIZE_BYTE];
    };
};
#pragma pack(pop)

THREADV uint8_t *hp_state = NULL;
THREADV int hp_allocated = 0;

#if defined(_MSC_VER)
#define cpuid(info,x)    __cpuidex(info,x,0)
#else
void cpuid(int CPUInfo[4], int InfoType)
{
    ASM __volatile__
    (
    "cpuid":
        "=a" (CPUInfo[0]),
        "=b" (CPUInfo[1]),
        "=c" (CPUInfo[2]),
        "=d" (CPUInfo[3]) :
            "a" (InfoType), "c" (0)
        );
}
#endif

/**
 * @brief a = (a xor b), where a and b point to 128 bit values
 */

STATIC INLINE void xor_blocks(uint8_t *a, const uint8_t *b)
{
    U64(a)[0] ^= U64(b)[0];
    U64(a)[1] ^= U64(b)[1];
}

/**
 * @brief uses cpuid to determine if the CPU supports the AES instructions
 * @return true if the CPU supports AES, false otherwise
 */

STATIC INLINE int check_aes_hw(void)
{
    int cpuid_results[4];
    static int supported = -1;

    if(supported >= 0)
        return supported;

    cpuid(cpuid_results,1);
    return supported = cpuid_results[2] & (1 << 25);
}

STATIC INLINE void aes_256_assist1(__m128i* t1, __m128i * t2)
{
    __m128i t4;
    *t2 = _mm_shuffle_epi32(*t2, 0xff);
    t4 = _mm_slli_si128(*t1, 0x04);
    *t1 = _mm_xor_si128(*t1, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t1 = _mm_xor_si128(*t1, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t1 = _mm_xor_si128(*t1, t4);
    *t1 = _mm_xor_si128(*t1, *t2);
}

STATIC INLINE void aes_256_assist2(__m128i* t1, __m128i * t3)
{
    __m128i t2, t4;
    t4 = _mm_aeskeygenassist_si128(*t1, 0x00);
    t2 = _mm_shuffle_epi32(t4, 0xaa);
    t4 = _mm_slli_si128(*t3, 0x04);
    *t3 = _mm_xor_si128(*t3, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t3 = _mm_xor_si128(*t3, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t3 = _mm_xor_si128(*t3, t4);
    *t3 = _mm_xor_si128(*t3, t2);
}

/** 
 * @brief expands 'key' into a form it can be used for AES encryption.
 * 
 * This is an SSE-optimized implementation of AES key schedule generation.  It
 * expands the key into multiple round keys, each of which is used in one round
 * of the AES encryption used to fill (and later, extract randomness from)
 * the large 2MB buffer.  Note that CryptoNight does not use a completely
 * standard AES encryption for its buffer expansion, so do not copy this 
 * function outside of Monero without caution!  This version uses the hardware
 * AESKEYGENASSIST instruction to speed key generation, and thus requires
 * CPU AES support.
 * For more information about these functions, see page 19 of Intel's AES instructions
 * white paper:
 * http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-instructions-set-white-paper.pdf
 *
 * @param key the input 128 bit key
 * @param expandedKey An output buffer to hold the generated key schedule
 */

STATIC INLINE void aes_expand_key(const uint8_t *key, uint8_t *expandedKey)
{
    __m128i *ek = R128(expandedKey);
    __m128i t1, t2, t3;

    t1 = _mm_loadu_si128(R128(key));
    t3 = _mm_loadu_si128(R128(key + 16));

    ek[0] = t1;
    ek[1] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x01);
    aes_256_assist1(&t1, &t2);
    ek[2] = t1;
    aes_256_assist2(&t1, &t3);
    ek[3] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x02);
    aes_256_assist1(&t1, &t2);
    ek[4] = t1;
    aes_256_assist2(&t1, &t3);
    ek[5] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x04);
    aes_256_assist1(&t1, &t2);
    ek[6] = t1;
    aes_256_assist2(&t1, &t3);
    ek[7] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x08);
    aes_256_assist1(&t1, &t2);
    ek[8] = t1;
    aes_256_assist2(&t1, &t3);
    ek[9] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x10);
    aes_256_assist1(&t1, &t2);
    ek[10] = t1;
}

/**
 * @brief a "pseudo" round of AES (similar to but slightly different from normal AES encryption)
 *
 * To fill its 2MB scratch buffer, CryptoNight uses a nonstandard implementation
 * of AES encryption:  It applies 10 rounds of the basic AES encryption operation
 * to an input 128 bit chunk of data <in>.  Unlike normal AES, however, this is
 * all it does;  it does not perform the initial AddRoundKey step (this is done
 * in subsequent steps by aesenc_si128), and it does not use the simpler final round.
 * Hence, this is a "pseudo" round - though the function actually implements 10 rounds together.
 *
 * Note that unlike aesb_pseudo_round, this function works on multiple data chunks.
 *
 * @param in a pointer to nblocks * 128 bits of data to be encrypted
 * @param out a pointer to an nblocks * 128 bit buffer where the output will be stored
 * @param expandedKey the expanded AES key
 * @param nblocks the number of 128 blocks of data to be encrypted
 */

STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out,
                                    const uint8_t *expandedKey, int nblocks)
{
    __m128i *k = R128(expandedKey);
    __m128i d;
    int i;

    for(i = 0; i < nblocks; i++)
    {
        d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE));
        d = _mm_aesenc_si128(d, *R128(&k[0]));
        d = _mm_aesenc_si128(d, *R128(&k[1]));
        d = _mm_aesenc_si128(d, *R128(&k[2]));
        d = _mm_aesenc_si128(d, *R128(&k[3]));
        d = _mm_aesenc_si128(d, *R128(&k[4]));
        d = _mm_aesenc_si128(d, *R128(&k[5]));
        d = _mm_aesenc_si128(d, *R128(&k[6]));
        d = _mm_aesenc_si128(d, *R128(&k[7]));
        d = _mm_aesenc_si128(d, *R128(&k[8]));
        d = _mm_aesenc_si128(d, *R128(&k[9]));
        _mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d);
    }
}

/**
 * @brief aes_pseudo_round that loads data from *in and xors it with *xor first
 *
 * This function performs the same operations as aes_pseudo_round, but before
 * performing the encryption of each 128 bit block from <in>, it xors
 * it with the corresponding block from <xor>.
 *
 * @param in a pointer to nblocks * 128 bits of data to be encrypted
 * @param out a pointer to an nblocks * 128 bit buffer where the output will be stored
 * @param expandedKey the expanded AES key
 * @param xor a pointer to an nblocks * 128 bit buffer that is xored into in before encryption (in is left unmodified)
 * @param nblocks the number of 128 blocks of data to be encrypted
 */

STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out,
                                        const uint8_t *expandedKey, const uint8_t *xor, int nblocks)
{
    __m128i *k = R128(expandedKey);
    __m128i *x = R128(xor);
    __m128i d;
    int i;

    for(i = 0; i < nblocks; i++)
    {
        d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE));
        d = _mm_xor_si128(d, *R128(x++));
        d = _mm_aesenc_si128(d, *R128(&k[0]));
        d = _mm_aesenc_si128(d, *R128(&k[1]));
        d = _mm_aesenc_si128(d, *R128(&k[2]));
        d = _mm_aesenc_si128(d, *R128(&k[3]));
        d = _mm_aesenc_si128(d, *R128(&k[4]));
        d = _mm_aesenc_si128(d, *R128(&k[5]));
        d = _mm_aesenc_si128(d, *R128(&k[6]));
        d = _mm_aesenc_si128(d, *R128(&k[7]));
        d = _mm_aesenc_si128(d, *R128(&k[8]));
        d = _mm_aesenc_si128(d, *R128(&k[9]));
        _mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d);
    }
}

#if defined(_MSC_VER) || defined(__MINGW32__)
BOOL SetLockPagesPrivilege(HANDLE hProcess, BOOL bEnable)
{
    struct
    {
        DWORD count;
        LUID_AND_ATTRIBUTES privilege[1];
    } info;

    HANDLE token;
    if(!OpenProcessToken(hProcess, TOKEN_ADJUST_PRIVILEGES, &token))
        return FALSE;

    info.count = 1;
    info.privilege[0].Attributes = bEnable ? SE_PRIVILEGE_ENABLED : 0;

    if(!LookupPrivilegeValue(NULL, SE_LOCK_MEMORY_NAME, &(info.privilege[0].Luid)))
        return FALSE;

    if(!AdjustTokenPrivileges(token, FALSE, (PTOKEN_PRIVILEGES) &info, 0, NULL, NULL))
        return FALSE;

    if (GetLastError() != ERROR_SUCCESS)
        return FALSE;

    CloseHandle(token);

    return TRUE;

}
#endif

/**
 * @brief allocate the 2MB scratch buffer using OS support for huge pages, if available
 *
 * This function tries to allocate the 2MB scratch buffer using a single 
 * 2MB "huge page" (instead of the usual 4KB page sizes) to reduce TLB misses
 * during the random accesses to the scratch buffer.  This is one of the
 * important speed optimizations needed to make CryptoNight faster.
 *
 * No parameters.  Updates a thread-local pointer, hp_state, to point to
 * the allocated buffer.
 */

void slow_hash_allocate_state(void)
{
    if(hp_state != NULL)
        return;

#if defined(_MSC_VER) || defined(__MINGW32__)
    SetLockPagesPrivilege(GetCurrentProcess(), TRUE);
    hp_state = (uint8_t *) VirtualAlloc(hp_state, MEMORY, MEM_LARGE_PAGES |
                                        MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else
#if defined(__APPLE__) || defined(__FreeBSD__)
    hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANON, 0, 0);    
#else
    hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, 0, 0);
#endif
    if(hp_state == MAP_FAILED)
        hp_state = NULL;
#endif
    hp_allocated = 1;
    if(hp_state == NULL)
    {
        hp_allocated = 0;
        hp_state = (uint8_t *) malloc(MEMORY);
    }
}

/**
 *@brief frees the state allocated by slow_hash_allocate_state
 */

void slow_hash_free_state(void)
{
    if(hp_state == NULL)
        return;

    if(!hp_allocated)
        free(hp_state);
    else
    {
#if defined(_MSC_VER) || defined(__MINGW32__)
        VirtualFree(hp_state, MEMORY, MEM_RELEASE);
#else
        munmap(hp_state, MEMORY);
#endif
    }

    hp_state = NULL;
    hp_allocated = 0;
}

/**
 * @brief the hash function implementing CryptoNight, used for the Monero proof-of-work
 *
 * Computes the hash of <data> (which consists of <length> bytes), returning the
 * hash in <hash>.  The CryptoNight hash operates by first using Keccak 1600,
 * the 1600 bit variant of the Keccak hash used in SHA-3, to create a 200 byte
 * buffer of pseudorandom data by hashing the supplied data.  It then uses this
 * random data to fill a large 2MB buffer with pseudorandom data by iteratively
 * encrypting it using 10 rounds of AES per entry.  After this initialization,
 * it executes 500,000 rounds of mixing through the random 2MB buffer using
 * AES (typically provided in hardware on modern CPUs) and a 64 bit multiply.
 * Finally, it re-mixes this large buffer back into
 * the 200 byte "text" buffer, and then hashes this buffer using one of four
 * pseudorandomly selected hash functions (Blake, Groestl, JH, or Skein)
 * to populate the output.
 *
 * The 2MB buffer and choice of functions for mixing are designed to make the
 * algorithm "CPU-friendly" (and thus, reduce the advantage of GPU, FPGA,
 * or ASIC-based implementations):  the functions used are fast on modern
 * CPUs, and the 2MB size matches the typical amount of L3 cache available per
 * core on 2013-era CPUs.  When available, this implementation will use hardware
 * AES support on x86 CPUs.
 *
 * A diagram of the inner loop of this function can be found at
 * http://www.cs.cmu.edu/~dga/crypto/xmr/cryptonight.png
 *
 * @param data the data to hash
 * @param length the length in bytes of the data
 * @param hash a pointer to a buffer in which the final 256 bit hash will be stored
 */

void cn_slow_hash(const void *data, size_t length, char *hash)
{
    RDATA_ALIGN16 uint8_t expandedKey[240];  /* These buffers are aligned to use later with SSE functions */

    uint8_t text[INIT_SIZE_BYTE];
    RDATA_ALIGN16 uint64_t a[2];
    RDATA_ALIGN16 uint64_t b[2];
    RDATA_ALIGN16 uint64_t c[2];
    union cn_slow_hash_state state;
    __m128i _a, _b, _c;
    uint64_t hi, lo;

    size_t i, j;
    uint64_t *p = NULL;
    oaes_ctx *aes_ctx;
    int useAes = check_aes_hw();

    static void (*const extra_hashes[4])(const void *, size_t, char *) =
    {
        hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
    };

    // this isn't supposed to happen, but guard against it for now.
    if(hp_state == NULL)
        slow_hash_allocate_state();

    /* CryptoNight Step 1:  Use Keccak1600 to initialize the 'state' (and 'text') buffers from the data. */

    hash_process(&state.hs, data, length);
    memcpy(text, state.init, INIT_SIZE_BYTE);

    /* CryptoNight Step 2:  Iteratively encrypt the results from Keccak to fill
     * the 2MB large random access buffer.
     */

    if(useAes)
    {
        aes_expand_key(state.hs.b, expandedKey);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
            memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
        }
    }
    else
    {
        aes_ctx = (oaes_ctx *) oaes_alloc();
        oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            for(j = 0; j < INIT_SIZE_BLK; j++)
                aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);

            memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
        }
    }

    U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
    U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1];
    U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0];
    U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1];

    /* CryptoNight Step 3:  Bounce randomly 1 million times through the mixing buffer,
     * using 500,000 iterations of the following mixing function.  Each execution
     * performs two reads and writes from the mixing buffer.
     */

    _b = _mm_load_si128(R128(b));
    // Two independent versions, one with AES, one without, to ensure that 
    // the useAes test is only performed once, not every iteration.
    if(useAes)
    {
        for(i = 0; i < ITER / 2; i++)
        {
            pre_aes();
            _c = _mm_aesenc_si128(_c, _a);
            post_aes();
        }
    }
    else
    {
        for(i = 0; i < ITER / 2; i++)
        {
            pre_aes();
            aesb_single_round((uint8_t *) &_c, (uint8_t *) &_c, (uint8_t *) &_a);
            post_aes();
        }
    }

    /* CryptoNight Step 4:  Sequentially pass through the mixing buffer and use 10 rounds
     * of AES encryption to mix the random data back into the 'text' buffer.  'text'
     * was originally created with the output of Keccak1600. */

    memcpy(text, state.init, INIT_SIZE_BYTE);
    if(useAes)
    {
        aes_expand_key(&state.hs.b[32], expandedKey);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            // add the xor to the pseudo round
            aes_pseudo_round_xor(text, text, expandedKey, &hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
        }
    }
    else
    {
        oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            for(j = 0; j < INIT_SIZE_BLK; j++)
            {
                xor_blocks(&text[j * AES_BLOCK_SIZE], &hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
                aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
            }
        }
        oaes_free((OAES_CTX **) &aes_ctx);
    }

    /* CryptoNight Step 5:  Apply Keccak to the state again, and then
     * use the resulting data to select which of four finalizer
     * hash functions to apply to the data (Blake, Groestl, JH, or Skein).
     * Use this hash to squeeze the state array down
     * to the final 256 bit hash output.
     */

    memcpy(state.init, text, INIT_SIZE_BYTE);
    hash_permutation(&state.hs);
    extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
}

#elif defined(__arm__)
// ND: Some minor optimizations for ARM7 (raspberrry pi 2), effect seems to be ~40-50% faster.
//     Needs more work.
void slow_hash_allocate_state(void)
{
  // Do nothing, this is just to maintain compatibility with the upgraded slow-hash.c
  return;
}

void slow_hash_free_state(void)
{
  // As above
  return;
}

static void (*const extra_hashes[4])(const void *, size_t, char *) = {
  hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
};

#define MEMORY         (1 << 21) /* 2 MiB */
#define ITER           (1 << 20)
#define AES_BLOCK_SIZE  16
#define AES_KEY_SIZE    32 /*16*/
#define INIT_SIZE_BLK   8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)

#if defined(__GNUC__)
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
#define STATIC static
#define INLINE inline
#else
#define RDATA_ALIGN16
#define STATIC static
#define INLINE
#endif

#define U64(x) ((uint64_t *) (x))

#include "aesb.c"

STATIC INLINE void ___mul128(uint32_t *a, uint32_t *b, uint32_t *h, uint32_t *l)
{
	// ND: 64x64 multiplication for ARM7
	__asm__ __volatile__
	(
			  //  lo    hi
		"umull %[r0], %[r1], %[b], %[d]\n\t"  // bd [r0 = bd.lo]
		"umull %[r2], %[r3], %[b], %[c]\n\t"  // bc
		"umull %[b],  %[c],  %[a], %[c]\n\t"  // ac
		"adds  %[r1], %[r1], %[r2]\n\t"       // r1 = bd.hi + bc.lo
		"adcs  %[r2], %[r3], %[b]\n\t"        // r2 = ac.lo + bc.hi + carry
		"adc   %[r3], %[c],  #0\n\t"          // r3 = ac.hi + carry
		"umull %[b],  %[a],  %[a], %[d]\n\t"  // ad
		"adds  %[r1], %[r1], %[b]\n\t"        // r1 = bd.hi + bc.lo + ad.lo
		"adcs  %[r2], %[r2], %[a]\n\t"        // r2 = ac.lo + bc.hi + ad.hi + carry
		"adc   %[r3], %[r3], #0\n\t"          // r3 = ac.hi + carry
		: [r0]"=&r"(l[0]), [r1]"=&r"(l[1]), [r2]"=&r"(h[0]), [r3]"=&r"(h[1])
		: [a]"r"(a[1]), [b]"r"(a[0]), [c]"r"(b[1]), [d]"r"(b[0])
		: "cc"
	);
}

STATIC INLINE void mul(const uint8_t* a, const uint8_t* b, uint8_t* res)
{
	___mul128((uint32_t *) a, (uint32_t *) b, (uint32_t *) (res + 0), (uint32_t *) (res + 8));
}

STATIC INLINE void sum_half_blocks(uint8_t* a, const uint8_t* b)
{
	uint64_t a0, a1, b0, b1;
	a0 = U64(a)[0];
	a1 = U64(a)[1];
	b0 = U64(b)[0];
	b1 = U64(b)[1];
	a0 += b0;
	a1 += b1;
	U64(a)[0] = a0;
	U64(a)[1] = a1;
}

STATIC INLINE void swap_blocks(uint8_t *a, uint8_t *b)
{
	uint64_t t[2];
	U64(t)[0] = U64(a)[0];
	U64(t)[1] = U64(a)[1];
	U64(a)[0] = U64(b)[0];
	U64(a)[1] = U64(b)[1];
	U64(b)[0] = U64(t)[0];
	U64(b)[1] = U64(t)[1];
}

STATIC INLINE void xor_blocks(uint8_t* a, const uint8_t* b)
{
	U64(a)[0] ^= U64(b)[0];
	U64(a)[1] ^= U64(b)[1];
}

#pragma pack(push, 1)
union cn_slow_hash_state
{
    union hash_state hs;
    struct
    {
        uint8_t k[64];
        uint8_t init[INIT_SIZE_BYTE];
    };
};
#pragma pack(pop)

void cn_slow_hash(const void *data, size_t length, char *hash)
{
    uint8_t long_state[MEMORY];
    uint8_t text[INIT_SIZE_BYTE];
    uint8_t a[AES_BLOCK_SIZE];
    uint8_t b[AES_BLOCK_SIZE];
    uint8_t d[AES_BLOCK_SIZE];
    uint8_t aes_key[AES_KEY_SIZE];
    RDATA_ALIGN16 uint8_t expandedKey[256];

    union cn_slow_hash_state state;

    size_t i, j;
    uint8_t *p = NULL;
    oaes_ctx *aes_ctx;
    static void (*const extra_hashes[4])(const void *, size_t, char *) =
    {
        hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
    };

    hash_process(&state.hs, data, length);
    memcpy(text, state.init, INIT_SIZE_BYTE);

    aes_ctx = (oaes_ctx *) oaes_alloc();
    oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);

    // use aligned data
    memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
    for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
    {
        for(j = 0; j < INIT_SIZE_BLK; j++)
            aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey);
            memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
    }

    U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
    U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1];
    U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0];
    U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1];

    for(i = 0; i < ITER / 2; i++)
    {
		#define MASK ((uint32_t)(((MEMORY / AES_BLOCK_SIZE) - 1) << 4))
		#define state_index(x) ((*(uint32_t *) x) & MASK)

        // Iteration 1
        p = &long_state[state_index(a)];
        aesb_single_round(p, p, a);

        xor_blocks(b, p);
        swap_blocks(b, p);
        swap_blocks(a, b);

        // Iteration 2
        p = &long_state[state_index(a)];

        mul(a, p, d);
        sum_half_blocks(b, d);
        swap_blocks(b, p);
        xor_blocks(b, p);
        swap_blocks(a, b);
    }

    memcpy(text, state.init, INIT_SIZE_BYTE);
    oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
    memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
    for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
    {
        for(j = 0; j < INIT_SIZE_BLK; j++)
        {
            xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
            aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey);
        }
    }

    oaes_free((OAES_CTX **) &aes_ctx);
    memcpy(state.init, text, INIT_SIZE_BYTE);
    hash_permutation(&state.hs);
    extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
}

#else
// Portable implementation as a fallback

void slow_hash_allocate_state(void)
{
  // Do nothing, this is just to maintain compatibility with the upgraded slow-hash.c
  return;
}

void slow_hash_free_state(void)
{
  // As above
  return;
}

static void (*const extra_hashes[4])(const void *, size_t, char *) = {
  hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
};

#define MEMORY         (1 << 21) /* 2 MiB */
#define ITER           (1 << 20)
#define AES_BLOCK_SIZE  16
#define AES_KEY_SIZE    32 /*16*/
#define INIT_SIZE_BLK   8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)

extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);

static size_t e2i(const uint8_t* a, size_t count) { return (*((uint64_t*)a) / AES_BLOCK_SIZE) & (count - 1); }

static void mul(const uint8_t* a, const uint8_t* b, uint8_t* res) {
  uint64_t a0, b0;
  uint64_t hi, lo;

  a0 = SWAP64LE(((uint64_t*)a)[0]);
  b0 = SWAP64LE(((uint64_t*)b)[0]);
  lo = mul128(a0, b0, &hi);
  ((uint64_t*)res)[0] = SWAP64LE(hi);
  ((uint64_t*)res)[1] = SWAP64LE(lo);
}

static void sum_half_blocks(uint8_t* a, const uint8_t* b) {
  uint64_t a0, a1, b0, b1;

  a0 = SWAP64LE(((uint64_t*)a)[0]);
  a1 = SWAP64LE(((uint64_t*)a)[1]);
  b0 = SWAP64LE(((uint64_t*)b)[0]);
  b1 = SWAP64LE(((uint64_t*)b)[1]);
  a0 += b0;
  a1 += b1;
  ((uint64_t*)a)[0] = SWAP64LE(a0);
  ((uint64_t*)a)[1] = SWAP64LE(a1);
}
#define U64(x) ((uint64_t *) (x))

static void copy_block(uint8_t* dst, const uint8_t* src) {
  memcpy(dst, src, AES_BLOCK_SIZE);
}

static void swap_blocks(uint8_t *a, uint8_t *b){
	uint64_t t[2];
	U64(t)[0] = U64(a)[0];
	U64(t)[1] = U64(a)[1];
	U64(a)[0] = U64(b)[0];
	U64(a)[1] = U64(b)[1];
	U64(b)[0] = U64(t)[0];
	U64(b)[1] = U64(t)[1];
}

static void xor_blocks(uint8_t* a, const uint8_t* b) {
  size_t i;
  for (i = 0; i < AES_BLOCK_SIZE; i++) {
    a[i] ^= b[i];
  }
}

#pragma pack(push, 1)
union cn_slow_hash_state {
  union hash_state hs;
  struct {
    uint8_t k[64];
    uint8_t init[INIT_SIZE_BYTE];
  };
};
#pragma pack(pop)

void cn_slow_hash(const void *data, size_t length, char *hash) {
  uint8_t long_state[MEMORY];
  union cn_slow_hash_state state;
  uint8_t text[INIT_SIZE_BYTE];
  uint8_t a[AES_BLOCK_SIZE];
  uint8_t b[AES_BLOCK_SIZE];
  uint8_t c[AES_BLOCK_SIZE];
  uint8_t d[AES_BLOCK_SIZE];
  size_t i, j;
  uint8_t aes_key[AES_KEY_SIZE];
  oaes_ctx *aes_ctx;

  hash_process(&state.hs, data, length);
  memcpy(text, state.init, INIT_SIZE_BYTE);
  memcpy(aes_key, state.hs.b, AES_KEY_SIZE);
  aes_ctx = (oaes_ctx *) oaes_alloc();
  
  oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
  for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
    for (j = 0; j < INIT_SIZE_BLK; j++) {    
		  aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
    }
    memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
  }

  for (i = 0; i < 16; i++) {
    a[i] = state.k[     i] ^ state.k[32 + i];
    b[i] = state.k[16 + i] ^ state.k[48 + i];
  }

  for (i = 0; i < ITER / 2; i++) {
    /* Dependency chain: address -> read value ------+
     * written value <-+ hard function (AES or MUL) <+
     * next address  <-+
     */
    /* Iteration 1 */
    j = e2i(a, MEMORY / AES_BLOCK_SIZE);
    copy_block(c, &long_state[j * AES_BLOCK_SIZE]);
	  aesb_single_round(c, c, a);
    xor_blocks(b, c);
    swap_blocks(b, c);
    copy_block(&long_state[j * AES_BLOCK_SIZE], c);
    assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE));
    swap_blocks(a, b);
    /* Iteration 2 */
    j = e2i(a, MEMORY / AES_BLOCK_SIZE);
    copy_block(c, &long_state[j * AES_BLOCK_SIZE]);
    mul(a, c, d);
    sum_half_blocks(b, d);
    swap_blocks(b, c);
    xor_blocks(b, c);
    copy_block(&long_state[j * AES_BLOCK_SIZE], c);
    assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE));
    swap_blocks(a, b);
  }

  memcpy(text, state.init, INIT_SIZE_BYTE);
  oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
  for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
    for (j = 0; j < INIT_SIZE_BLK; j++) {
      xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
	    aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
    }
  }
  memcpy(state.init, text, INIT_SIZE_BYTE);
  hash_permutation(&state.hs);
  /*memcpy(hash, &state, 32);*/
  extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
  oaes_free((OAES_CTX **) &aes_ctx);
}

#endif