/*
* daemon/remote.c - remote control for the unbound daemon.
*
* Copyright (c) 2008, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains the remote control functionality for the daemon.
* The remote control can be performed using either the commandline
* unbound-control tool, or a TLS capable web browser.
* The channel is secured using TLSv1, and certificates.
* Both the server and the client(control tool) have their own keys.
*/
#include "config.h"
#ifdef HAVE_OPENSSL_ERR_H
#include <openssl/err.h>
#endif
#ifndef HEADER_DH_H
#include <openssl/dh.h>
#endif
#include <ctype.h>
#include "daemon/remote.h"
#include "daemon/worker.h"
#include "daemon/daemon.h"
#include "daemon/stats.h"
#include "daemon/cachedump.h"
#include "util/log.h"
#include "util/config_file.h"
#include "util/net_help.h"
#include "util/module.h"
#include "services/listen_dnsport.h"
#include "services/cache/rrset.h"
#include "services/cache/infra.h"
#include "services/mesh.h"
#include "services/localzone.h"
#include "util/storage/slabhash.h"
#include "util/fptr_wlist.h"
#include "util/data/dname.h"
#include "validator/validator.h"
#include "validator/val_kcache.h"
#include "validator/val_kentry.h"
#include "validator/val_anchor.h"
#include "iterator/iterator.h"
#include "iterator/iter_fwd.h"
#include "iterator/iter_hints.h"
#include "iterator/iter_delegpt.h"
#include "services/outbound_list.h"
#include "services/outside_network.h"
#include "sldns/str2wire.h"
#include "sldns/parseutil.h"
#include "sldns/wire2str.h"
#include "sldns/sbuffer.h"
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_NETDB_H
#include <netdb.h>
#endif
/* just for portability */
#ifdef SQ
#undef SQ
#endif
/** what to put on statistics lines between var and value, ": " or "=" */
#define SQ "="
/** if true, inhibits a lot of =0 lines from the stats output */
static const int inhibit_zero = 1;
/** subtract timers and the values do not overflow or become negative */
static void
timeval_subtract(struct timeval* d, const struct timeval* end,
const struct timeval* start)
{
#ifndef S_SPLINT_S
time_t end_usec = end->tv_usec;
d->tv_sec = end->tv_sec - start->tv_sec;
if(end_usec < start->tv_usec) {
end_usec += 1000000;
d->tv_sec--;
}
d->tv_usec = end_usec - start->tv_usec;
#endif
}
/** divide sum of timers to get average */
static void
timeval_divide(struct timeval* avg, const struct timeval* sum, size_t d)
{
#ifndef S_SPLINT_S
size_t leftover;
if(d == 0) {
avg->tv_sec = 0;
avg->tv_usec = 0;
return;
}
avg->tv_sec = sum->tv_sec / d;
avg->tv_usec = sum->tv_usec / d;
/* handle fraction from seconds divide */
leftover = sum->tv_sec - avg->tv_sec*d;
avg->tv_usec += (leftover*1000000)/d;
#endif
}
/*
* The following function was generated using the openssl utility, using
* the command : "openssl dhparam -dsaparam -C 1024"
* (some openssl versions reject DH that is 'too small', eg. 512).
*/
#ifndef S_SPLINT_S
DH *get_dh1024()
{
static unsigned char dh1024_p[]={
0xB3,0x67,0x2E,0x3B,0x68,0xC5,0xDA,0x58,0x46,0xD6,0x2B,0xD3,
0x41,0x78,0x97,0xE4,0xE1,0x61,0x71,0x68,0xE6,0x0F,0x1D,0x78,
0x05,0xAA,0xF0,0xFF,0x30,0xDF,0xAC,0x49,0x7F,0xE0,0x90,0xFE,
0xB9,0x56,0x4E,0x3F,0xE2,0x98,0x8A,0xED,0xF5,0x28,0x39,0xEF,
0x2E,0xA6,0xB7,0x67,0xB2,0x43,0xE4,0x53,0xF8,0xEB,0x2C,0x1F,
0x06,0x77,0x3A,0x6F,0x62,0x98,0xC1,0x3B,0xF7,0xBA,0x4D,0x93,
0xF7,0xEB,0x5A,0xAD,0xC5,0x5F,0xF0,0xB7,0x24,0x35,0x81,0xF7,
0x7F,0x1F,0x24,0xC0,0xDF,0xD3,0xD8,0x40,0x72,0x7E,0xF3,0x19,
0x2B,0x26,0x27,0xF4,0xB6,0xB3,0xD4,0x7D,0x08,0x23,0xBE,0x68,
0x2B,0xCA,0xB4,0x46,0xA8,0x9E,0xDD,0x6C,0x3D,0x75,0xA6,0x48,
0xF7,0x44,0x43,0xBF,0x91,0xC2,0xB4,0x49,
};
static unsigned char dh1024_g[]={
0x5F,0x37,0xB5,0x80,0x4D,0xB4,0xC4,0xB2,0x37,0x12,0xD5,0x2F,
0x56,0x81,0xB0,0xDF,0x3D,0x27,0xA2,0x54,0xE7,0x14,0x65,0x2D,
0x72,0xA8,0x97,0xE0,0xA9,0x4A,0x09,0x5E,0x89,0xBE,0x34,0x9A,
0x90,0x98,0xC1,0xE8,0xBB,0x01,0x2B,0xC2,0x74,0x74,0x90,0x59,
0x0B,0x72,0x62,0x5C,0xFD,0x49,0x63,0x4B,0x38,0x91,0xF1,0x7F,
0x13,0x25,0xEB,0x52,0x50,0x47,0xA2,0x8C,0x32,0x28,0x42,0xAC,
0xBD,0x7A,0xCC,0x58,0xBE,0x36,0xDA,0x6A,0x24,0x06,0xC7,0xF1,
0xDA,0x8D,0x8A,0x3B,0x03,0xFA,0x6F,0x25,0xE5,0x20,0xA7,0xD6,
0x6F,0x74,0x61,0x53,0x14,0x81,0x29,0x04,0xB5,0x61,0x12,0x53,
0xA3,0xD6,0x09,0x98,0x0C,0x8F,0x1C,0xBB,0xD7,0x1C,0x2C,0xEE,
0x56,0x4B,0x74,0x8F,0x4A,0xF8,0xA9,0xD5,
};
DH *dh;
if ((dh=DH_new()) == NULL) return(NULL);
dh->p=BN_bin2bn(dh1024_p,sizeof(dh1024_p),NULL);
dh->g=BN_bin2bn(dh1024_g,sizeof(dh1024_g),NULL);
if ((dh->p == NULL) || (dh->g == NULL))
{ DH_free(dh); return(NULL); }
dh->length = 160;
return(dh);
}
#endif /* SPLINT */
struct daemon_remote*
daemon_remote_create(struct config_file* cfg)
{
char* s_cert;
char* s_key;
struct daemon_remote* rc = (struct daemon_remote*)calloc(1,
sizeof(*rc));
if(!rc) {
log_err("out of memory in daemon_remote_create");
return NULL;
}
rc->max_active = 10;
if(!cfg->remote_control_enable) {
rc->ctx = NULL;
return rc;
}
rc->ctx = SSL_CTX_new(SSLv23_server_method());
if(!rc->ctx) {
log_crypto_err("could not SSL_CTX_new");
free(rc);
return NULL;
}
/* no SSLv2, SSLv3 because has defects */
if((SSL_CTX_set_options(rc->ctx, SSL_OP_NO_SSLv2) & SSL_OP_NO_SSLv2)
!= SSL_OP_NO_SSLv2){
log_crypto_err("could not set SSL_OP_NO_SSLv2");
daemon_remote_delete(rc);
return NULL;
}
if((SSL_CTX_set_options(rc->ctx, SSL_OP_NO_SSLv3) & SSL_OP_NO_SSLv3)
!= SSL_OP_NO_SSLv3){
log_crypto_err("could not set SSL_OP_NO_SSLv3");
daemon_remote_delete(rc);
return NULL;
}
if (cfg->remote_control_use_cert == 0) {
/* No certificates are requested */
if(!SSL_CTX_set_cipher_list(rc->ctx, "aNULL")) {
log_crypto_err("Failed to set aNULL cipher list");
return NULL;
}
/* Since we have no certificates and hence no source of
* DH params, let's generate and set them
*/
if(!SSL_CTX_set_tmp_dh(rc->ctx,get_dh1024())) {
log_crypto_err("Wanted to set DH param, but failed");
return NULL;
}
return rc;
}
rc->use_cert = 1;
s_cert = fname_after_chroot(cfg->server_cert_file, cfg, 1);
s_key = fname_after_chroot(cfg->server_key_file, cfg, 1);
if(!s_cert || !s_key) {
log_err("out of memory in remote control fname");
goto setup_error;
}
verbose(VERB_ALGO, "setup SSL certificates");
if (!SSL_CTX_use_certificate_chain_file(rc->ctx,s_cert)) {
log_err("Error for server-cert-file: %s", s_cert);
log_crypto_err("Error in SSL_CTX use_certificate_chain_file");
goto setup_error;
}
if(!SSL_CTX_use_PrivateKey_file(rc->ctx,s_key,SSL_FILETYPE_PEM)) {
log_err("Error for server-key-file: %s", s_key);
log_crypto_err("Error in SSL_CTX use_PrivateKey_file");
goto setup_error;
}
if(!SSL_CTX_check_private_key(rc->ctx)) {
log_err("Error for server-key-file: %s", s_key);
log_crypto_err("Error in SSL_CTX check_private_key");
goto setup_error;
}
#if HAVE_DECL_SSL_CTX_SET_ECDH_AUTO
if(!SSL_CTX_set_ecdh_auto(rc->ctx,1)) {
log_crypto_err("Error in SSL_CTX_ecdh_auto, not enabling ECDHE");
}
#elif defined(USE_ECDSA)
if(1) {
EC_KEY *ecdh = EC_KEY_new_by_curve_name (NID_X9_62_prime256v1);
if (!ecdh) {
log_crypto_err("could not find p256, not enabling ECDHE");
} else {
if (1 != SSL_CTX_set_tmp_ecdh (rc->ctx, ecdh)) {
log_crypto_err("Error in SSL_CTX_set_tmp_ecdh, not enabling ECDHE");
}
EC_KEY_free (ecdh);
}
}
#endif
if(!SSL_CTX_load_verify_locations(rc->ctx, s_cert, NULL)) {
log_crypto_err("Error setting up SSL_CTX verify locations");
setup_error:
free(s_cert);
free(s_key);
daemon_remote_delete(rc);
return NULL;
}
SSL_CTX_set_client_CA_list(rc->ctx, SSL_load_client_CA_file(s_cert));
SSL_CTX_set_verify(rc->ctx, SSL_VERIFY_PEER, NULL);
free(s_cert);
free(s_key);
return rc;
}
void daemon_remote_clear(struct daemon_remote* rc)
{
struct rc_state* p, *np;
if(!rc) return;
/* but do not close the ports */
listen_list_delete(rc->accept_list);
rc->accept_list = NULL;
/* do close these sockets */
p = rc->busy_list;
while(p) {
np = p->next;
if(p->ssl)
SSL_free(p->ssl);
comm_point_delete(p->c);
free(p);
p = np;
}
rc->busy_list = NULL;
rc->active = 0;
rc->worker = NULL;
}
void daemon_remote_delete(struct daemon_remote* rc)
{
if(!rc) return;
daemon_remote_clear(rc);
if(rc->ctx) {
SSL_CTX_free(rc->ctx);
}
free(rc);
}
/**
* Add and open a new control port
* @param ip: ip str
* @param nr: port nr
* @param list: list head
* @param noproto_is_err: if lack of protocol support is an error.
* @param cfg: config with username for chown of unix-sockets.
* @return false on failure.
*/
static int
add_open(const char* ip, int nr, struct listen_port** list, int noproto_is_err,
struct config_file* cfg)
{
struct addrinfo hints;
struct addrinfo* res;
struct listen_port* n;
int noproto;
int fd, r;
char port[15];
snprintf(port, sizeof(port), "%d", nr);
port[sizeof(port)-1]=0;
memset(&hints, 0, sizeof(hints));
if(ip[0] == '/') {
/* This looks like a local socket */
fd = create_local_accept_sock(ip, &noproto);
/*
* Change socket ownership and permissions so users other
* than root can access it provided they are in the same
* group as the user we run as.
*/
if(fd != -1) {
#ifdef HAVE_CHOWN
if (cfg->username && cfg->username[0] &&
cfg_uid != (uid_t)-1)
chown(ip, cfg_uid, cfg_gid);
chmod(ip, (mode_t)(S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP));
#else
(void)cfg;
#endif
}
} else {
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE | AI_NUMERICHOST;
if((r = getaddrinfo(ip, port, &hints, &res)) != 0 || !res) {
#ifdef USE_WINSOCK
if(!noproto_is_err && r == EAI_NONAME) {
/* tried to lookup the address as name */
return 1; /* return success, but do nothing */
}
#endif /* USE_WINSOCK */
log_err("control interface %s:%s getaddrinfo: %s %s",
ip?ip:"default", port, gai_strerror(r),
#ifdef EAI_SYSTEM
r==EAI_SYSTEM?(char*)strerror(errno):""
#else
""
#endif
);
return 0;
}
/* open fd */
fd = create_tcp_accept_sock(res, 1, &noproto, 0,
cfg->ip_transparent);
freeaddrinfo(res);
}
if(fd == -1 && noproto) {
if(!noproto_is_err)
return 1; /* return success, but do nothing */
log_err("cannot open control interface %s %d : "
"protocol not supported", ip, nr);
return 0;
}
if(fd == -1) {
log_err("cannot open control interface %s %d", ip, nr);
return 0;
}
/* alloc */
n = (struct listen_port*)calloc(1, sizeof(*n));
if(!n) {
#ifndef USE_WINSOCK
close(fd);
#else
closesocket(fd);
#endif
log_err("out of memory");
return 0;
}
n->next = *list;
*list = n;
n->fd = fd;
return 1;
}
struct listen_port* daemon_remote_open_ports(struct config_file* cfg)
{
struct listen_port* l = NULL;
log_assert(cfg->remote_control_enable && cfg->control_port);
if(cfg->control_ifs) {
struct config_strlist* p;
for(p = cfg->control_ifs; p; p = p->next) {
if(!add_open(p->str, cfg->control_port, &l, 1, cfg)) {
listening_ports_free(l);
return NULL;
}
}
} else {
/* defaults */
if(cfg->do_ip6 &&
!add_open("::1", cfg->control_port, &l, 0, cfg)) {
listening_ports_free(l);
return NULL;
}
if(cfg->do_ip4 &&
!add_open("127.0.0.1", cfg->control_port, &l, 1, cfg)) {
listening_ports_free(l);
return NULL;
}
}
return l;
}
/** open accept commpoint */
static int
accept_open(struct daemon_remote* rc, int fd)
{
struct listen_list* n = (struct listen_list*)malloc(sizeof(*n));
if(!n) {
log_err("out of memory");
return 0;
}
n->next = rc->accept_list;
rc->accept_list = n;
/* open commpt */
n->com = comm_point_create_raw(rc->worker->base, fd, 0,
&remote_accept_callback, rc);
if(!n->com)
return 0;
/* keep this port open, its fd is kept in the rc portlist */
n->com->do_not_close = 1;
return 1;
}
int daemon_remote_open_accept(struct daemon_remote* rc,
struct listen_port* ports, struct worker* worker)
{
struct listen_port* p;
rc->worker = worker;
for(p = ports; p; p = p->next) {
if(!accept_open(rc, p->fd)) {
log_err("could not create accept comm point");
return 0;
}
}
return 1;
}
void daemon_remote_stop_accept(struct daemon_remote* rc)
{
struct listen_list* p;
for(p=rc->accept_list; p; p=p->next) {
comm_point_stop_listening(p->com);
}
}
void daemon_remote_start_accept(struct daemon_remote* rc)
{
struct listen_list* p;
for(p=rc->accept_list; p; p=p->next) {
comm_point_start_listening(p->com, -1, -1);
}
}
int remote_accept_callback(struct comm_point* c, void* arg, int err,
struct comm_reply* ATTR_UNUSED(rep))
{
struct daemon_remote* rc = (struct daemon_remote*)arg;
struct sockaddr_storage addr;
socklen_t addrlen;
int newfd;
struct rc_state* n;
if(err != NETEVENT_NOERROR) {
log_err("error %d on remote_accept_callback", err);
return 0;
}
/* perform the accept */
newfd = comm_point_perform_accept(c, &addr, &addrlen);
if(newfd == -1)
return 0;
/* create new commpoint unless we are servicing already */
if(rc->active >= rc->max_active) {
log_warn("drop incoming remote control: too many connections");
close_exit:
#ifndef USE_WINSOCK
close(newfd);
#else
closesocket(newfd);
#endif
return 0;
}
/* setup commpoint to service the remote control command */
n = (struct rc_state*)calloc(1, sizeof(*n));
if(!n) {
log_err("out of memory");
goto close_exit;
}
/* start in reading state */
n->c = comm_point_create_raw(rc->worker->base, newfd, 0,
&remote_control_callback, n);
if(!n->c) {
log_err("out of memory");
free(n);
goto close_exit;
}
log_addr(VERB_QUERY, "new control connection from", &addr, addrlen);
n->c->do_not_close = 0;
comm_point_stop_listening(n->c);
comm_point_start_listening(n->c, -1, REMOTE_CONTROL_TCP_TIMEOUT);
memcpy(&n->c->repinfo.addr, &addr, addrlen);
n->c->repinfo.addrlen = addrlen;
n->shake_state = rc_hs_read;
n->ssl = SSL_new(rc->ctx);
if(!n->ssl) {
log_crypto_err("could not SSL_new");
comm_point_delete(n->c);
free(n);
goto close_exit;
}
SSL_set_accept_state(n->ssl);
(void)SSL_set_mode(n->ssl, SSL_MODE_AUTO_RETRY);
if(!SSL_set_fd(n->ssl, newfd)) {
log_crypto_err("could not SSL_set_fd");
SSL_free(n->ssl);
comm_point_delete(n->c);
free(n);
goto close_exit;
}
n->rc = rc;
n->next = rc->busy_list;
rc->busy_list = n;
rc->active ++;
/* perform the first nonblocking read already, for windows,
* so it can return wouldblock. could be faster too. */
(void)remote_control_callback(n->c, n, NETEVENT_NOERROR, NULL);
return 0;
}
/** delete from list */
static void
state_list_remove_elem(struct rc_state** list, struct comm_point* c)
{
while(*list) {
if( (*list)->c == c) {
*list = (*list)->next;
return;
}
list = &(*list)->next;
}
}
/** decrease active count and remove commpoint from busy list */
static void
clean_point(struct daemon_remote* rc, struct rc_state* s)
{
state_list_remove_elem(&rc->busy_list, s->c);
rc->active --;
if(s->ssl) {
SSL_shutdown(s->ssl);
SSL_free(s->ssl);
}
comm_point_delete(s->c);
free(s);
}
int
ssl_print_text(SSL* ssl, const char* text)
{
int r;
if(!ssl)
return 0;
ERR_clear_error();
if((r=SSL_write(ssl, text, (int)strlen(text))) <= 0) {
if(SSL_get_error(ssl, r) == SSL_ERROR_ZERO_RETURN) {
verbose(VERB_QUERY, "warning, in SSL_write, peer "
"closed connection");
return 0;
}
log_crypto_err("could not SSL_write");
return 0;
}
return 1;
}
/** print text over the ssl connection */
static int
ssl_print_vmsg(SSL* ssl, const char* format, va_list args)
{
char msg[1024];
vsnprintf(msg, sizeof(msg), format, args);
return ssl_print_text(ssl, msg);
}
/** printf style printing to the ssl connection */
int ssl_printf(SSL* ssl, const char* format, ...)
{
va_list args;
int ret;
va_start(args, format);
ret = ssl_print_vmsg(ssl, format, args);
va_end(args);
return ret;
}
int
ssl_read_line(SSL* ssl, char* buf, size_t max)
{
int r;
size_t len = 0;
if(!ssl)
return 0;
while(len < max) {
ERR_clear_error();
if((r=SSL_read(ssl, buf+len, 1)) <= 0) {
if(SSL_get_error(ssl, r) == SSL_ERROR_ZERO_RETURN) {
buf[len] = 0;
return 1;
}
log_crypto_err("could not SSL_read");
return 0;
}
if(buf[len] == '\n') {
/* return string without \n */
buf[len] = 0;
return 1;
}
len++;
}
buf[max-1] = 0;
log_err("control line too long (%d): %s", (int)max, buf);
return 0;
}
/** skip whitespace, return new pointer into string */
static char*
skipwhite(char* str)
{
/* EOS \0 is not a space */
while( isspace((unsigned char)*str) )
str++;
return str;
}
/** send the OK to the control client */
static void send_ok(SSL* ssl)
{
(void)ssl_printf(ssl, "ok\n");
}
/** do the stop command */
static void
do_stop(SSL* ssl, struct daemon_remote* rc)
{
rc->worker->need_to_exit = 1;
comm_base_exit(rc->worker->base);
send_ok(ssl);
}
/** do the reload command */
static void
do_reload(SSL* ssl, struct daemon_remote* rc)
{
rc->worker->need_to_exit = 0;
comm_base_exit(rc->worker->base);
send_ok(ssl);
}
/** do the verbosity command */
static void
do_verbosity(SSL* ssl, char* str)
{
int val = atoi(str);
if(val == 0 && strcmp(str, "0") != 0) {
ssl_printf(ssl, "error in verbosity number syntax: %s\n", str);
return;
}
verbosity = val;
send_ok(ssl);
}
/** print stats from statinfo */
static int
print_stats(SSL* ssl, const char* nm, struct stats_info* s)
{
struct timeval avg;
if(!ssl_printf(ssl, "%s.num.queries"SQ"%lu\n", nm,
(unsigned long)s->svr.num_queries)) return 0;
if(!ssl_printf(ssl, "%s.num.cachehits"SQ"%lu\n", nm,
(unsigned long)(s->svr.num_queries
- s->svr.num_queries_missed_cache))) return 0;
if(!ssl_printf(ssl, "%s.num.cachemiss"SQ"%lu\n", nm,
(unsigned long)s->svr.num_queries_missed_cache)) return 0;
if(!ssl_printf(ssl, "%s.num.prefetch"SQ"%lu\n", nm,
(unsigned long)s->svr.num_queries_prefetch)) return 0;
if(!ssl_printf(ssl, "%s.num.recursivereplies"SQ"%lu\n", nm,
(unsigned long)s->mesh_replies_sent)) return 0;
if(!ssl_printf(ssl, "%s.requestlist.avg"SQ"%g\n", nm,
(s->svr.num_queries_missed_cache+s->svr.num_queries_prefetch)?
(double)s->svr.sum_query_list_size/
(s->svr.num_queries_missed_cache+
s->svr.num_queries_prefetch) : 0.0)) return 0;
if(!ssl_printf(ssl, "%s.requestlist.max"SQ"%lu\n", nm,
(unsigned long)s->svr.max_query_list_size)) return 0;
if(!ssl_printf(ssl, "%s.requestlist.overwritten"SQ"%lu\n", nm,
(unsigned long)s->mesh_jostled)) return 0;
if(!ssl_printf(ssl, "%s.requestlist.exceeded"SQ"%lu\n", nm,
(unsigned long)s->mesh_dropped)) return 0;
if(!ssl_printf(ssl, "%s.requestlist.current.all"SQ"%lu\n", nm,
(unsigned long)s->mesh_num_states)) return 0;
if(!ssl_printf(ssl, "%s.requestlist.current.user"SQ"%lu\n", nm,
(unsigned long)s->mesh_num_reply_states)) return 0;
timeval_divide(&avg, &s->mesh_replies_sum_wait, s->mesh_replies_sent);
if(!ssl_printf(ssl, "%s.recursion.time.avg"SQ ARG_LL "d.%6.6d\n", nm,
(long long)avg.tv_sec, (int)avg.tv_usec)) return 0;
if(!ssl_printf(ssl, "%s.recursion.time.median"SQ"%g\n", nm,
s->mesh_time_median)) return 0;
if(!ssl_printf(ssl, "%s.tcpusage"SQ"%lu\n", nm,
(unsigned long)s->svr.tcp_accept_usage)) return 0;
return 1;
}
/** print stats for one thread */
static int
print_thread_stats(SSL* ssl, int i, struct stats_info* s)
{
char nm[16];
snprintf(nm, sizeof(nm), "thread%d", i);
nm[sizeof(nm)-1]=0;
return print_stats(ssl, nm, s);
}
/** print long number */
static int
print_longnum(SSL* ssl, const char* desc, size_t x)
{
if(x > 1024*1024*1024) {
/* more than a Gb */
size_t front = x / (size_t)1000000;
size_t back = x % (size_t)1000000;
return ssl_printf(ssl, "%s%u%6.6u\n", desc,
(unsigned)front, (unsigned)back);
} else {
return ssl_printf(ssl, "%s%lu\n", desc, (unsigned long)x);
}
}
/** print mem stats */
static int
print_mem(SSL* ssl, struct worker* worker, struct daemon* daemon)
{
int m;
size_t msg, rrset, val, iter;
#ifdef HAVE_SBRK
extern void* unbound_start_brk;
void* cur = sbrk(0);
if(!print_longnum(ssl, "mem.total.sbrk"SQ,
(size_t)((char*)cur - (char*)unbound_start_brk))) return 0;
#endif /* HAVE_SBRK */
msg = slabhash_get_mem(daemon->env->msg_cache);
rrset = slabhash_get_mem(&daemon->env->rrset_cache->table);
val=0;
iter=0;
m = modstack_find(&worker->env.mesh->mods, "validator");
if(m != -1) {
fptr_ok(fptr_whitelist_mod_get_mem(worker->env.mesh->
mods.mod[m]->get_mem));
val = (*worker->env.mesh->mods.mod[m]->get_mem)
(&worker->env, m);
}
m = modstack_find(&worker->env.mesh->mods, "iterator");
if(m != -1) {
fptr_ok(fptr_whitelist_mod_get_mem(worker->env.mesh->
mods.mod[m]->get_mem));
iter = (*worker->env.mesh->mods.mod[m]->get_mem)
(&worker->env, m);
}
if(!print_longnum(ssl, "mem.cache.rrset"SQ, rrset))
return 0;
if(!print_longnum(ssl, "mem.cache.message"SQ, msg))
return 0;
if(!print_longnum(ssl, "mem.mod.iterator"SQ, iter))
return 0;
if(!print_longnum(ssl, "mem.mod.validator"SQ, val))
return 0;
return 1;
}
/** print uptime stats */
static int
print_uptime(SSL* ssl, struct worker* worker, int reset)
{
struct timeval now = *worker->env.now_tv;
struct timeval up, dt;
timeval_subtract(&up, &now, &worker->daemon->time_boot);
timeval_subtract(&dt, &now, &worker->daemon->time_last_stat);
if(reset)
worker->daemon->time_last_stat = now;
if(!ssl_printf(ssl, "time.now"SQ ARG_LL "d.%6.6d\n",
(long long)now.tv_sec, (unsigned)now.tv_usec)) return 0;
if(!ssl_printf(ssl, "time.up"SQ ARG_LL "d.%6.6d\n",
(long long)up.tv_sec, (unsigned)up.tv_usec)) return 0;
if(!ssl_printf(ssl, "time.elapsed"SQ ARG_LL "d.%6.6d\n",
(long long)dt.tv_sec, (unsigned)dt.tv_usec)) return 0;
return 1;
}
/** print extended histogram */
static int
print_hist(SSL* ssl, struct stats_info* s)
{
struct timehist* hist;
size_t i;
hist = timehist_setup();
if(!hist) {
log_err("out of memory");
return 0;
}
timehist_import(hist, s->svr.hist, NUM_BUCKETS_HIST);
for(i=0; i<hist->num; i++) {
if(!ssl_printf(ssl,
"histogram.%6.6d.%6.6d.to.%6.6d.%6.6d=%lu\n",
(int)hist->buckets[i].lower.tv_sec,
(int)hist->buckets[i].lower.tv_usec,
(int)hist->buckets[i].upper.tv_sec,
(int)hist->buckets[i].upper.tv_usec,
(unsigned long)hist->buckets[i].count)) {
timehist_delete(hist);
return 0;
}
}
timehist_delete(hist);
return 1;
}
/** print extended stats */
static int
print_ext(SSL* ssl, struct stats_info* s)
{
int i;
char nm[16];
const sldns_rr_descriptor* desc;
const sldns_lookup_table* lt;
/* TYPE */
for(i=0; i<STATS_QTYPE_NUM; i++) {
if(inhibit_zero && s->svr.qtype[i] == 0)
continue;
desc = sldns_rr_descript((uint16_t)i);
if(desc && desc->_name) {
snprintf(nm, sizeof(nm), "%s", desc->_name);
} else if (i == LDNS_RR_TYPE_IXFR) {
snprintf(nm, sizeof(nm), "IXFR");
} else if (i == LDNS_RR_TYPE_AXFR) {
snprintf(nm, sizeof(nm), "AXFR");
} else if (i == LDNS_RR_TYPE_MAILA) {
snprintf(nm, sizeof(nm), "MAILA");
} else if (i == LDNS_RR_TYPE_MAILB) {
snprintf(nm, sizeof(nm), "MAILB");
} else if (i == LDNS_RR_TYPE_ANY) {
snprintf(nm, sizeof(nm), "ANY");
} else {
snprintf(nm, sizeof(nm), "TYPE%d", i);
}
if(!ssl_printf(ssl, "num.query.type.%s"SQ"%lu\n",
nm, (unsigned long)s->svr.qtype[i])) return 0;
}
if(!inhibit_zero || s->svr.qtype_big) {
if(!ssl_printf(ssl, "num.query.type.other"SQ"%lu\n",
(unsigned long)s->svr.qtype_big)) return 0;
}
/* CLASS */
for(i=0; i<STATS_QCLASS_NUM; i++) {
if(inhibit_zero && s->svr.qclass[i] == 0)
continue;
lt = sldns_lookup_by_id(sldns_rr_classes, i);
if(lt && lt->name) {
snprintf(nm, sizeof(nm), "%s", lt->name);
} else {
snprintf(nm, sizeof(nm), "CLASS%d", i);
}
if(!ssl_printf(ssl, "num.query.class.%s"SQ"%lu\n",
nm, (unsigned long)s->svr.qclass[i])) return 0;
}
if(!inhibit_zero || s->svr.qclass_big) {
if(!ssl_printf(ssl, "num.query.class.other"SQ"%lu\n",
(unsigned long)s->svr.qclass_big)) return 0;
}
/* OPCODE */
for(i=0; i<STATS_OPCODE_NUM; i++) {
if(inhibit_zero && s->svr.qopcode[i] == 0)
continue;
lt = sldns_lookup_by_id(sldns_opcodes, i);
if(lt && lt->name) {
snprintf(nm, sizeof(nm), "%s", lt->name);
} else {
snprintf(nm, sizeof(nm), "OPCODE%d", i);
}
if(!ssl_printf(ssl, "num.query.opcode.%s"SQ"%lu\n",
nm, (unsigned long)s->svr.qopcode[i])) return 0;
}
/* transport */
if(!ssl_printf(ssl, "num.query.tcp"SQ"%lu\n",
(unsigned long)s->svr.qtcp)) return 0;
if(!ssl_printf(ssl, "num.query.tcpout"SQ"%lu\n",
(unsigned long)s->svr.qtcp_outgoing)) return 0;
if(!ssl_printf(ssl, "num.query.ipv6"SQ"%lu\n",
(unsigned long)s->svr.qipv6)) return 0;
/* flags */
if(!ssl_printf(ssl, "num.query.flags.QR"SQ"%lu\n",
(unsigned long)s->svr.qbit_QR)) return 0;
if(!ssl_printf(ssl, "num.query.flags.AA"SQ"%lu\n",
(unsigned long)s->svr.qbit_AA)) return 0;
if(!ssl_printf(ssl, "num.query.flags.TC"SQ"%lu\n",
(unsigned long)s->svr.qbit_TC)) return 0;
if(!ssl_printf(ssl, "num.query.flags.RD"SQ"%lu\n",
(unsigned long)s->svr.qbit_RD)) return 0;
if(!ssl_printf(ssl, "num.query.flags.RA"SQ"%lu\n",
(unsigned long)s->svr.qbit_RA)) return 0;
if(!ssl_printf(ssl, "num.query.flags.Z"SQ"%lu\n",
(unsigned long)s->svr.qbit_Z)) return 0;
if(!ssl_printf(ssl, "num.query.flags.AD"SQ"%lu\n",
(unsigned long)s->svr.qbit_AD)) return 0;
if(!ssl_printf(ssl, "num.query.flags.CD"SQ"%lu\n",
(unsigned long)s->svr.qbit_CD)) return 0;
if(!ssl_printf(ssl, "num.query.edns.present"SQ"%lu\n",
(unsigned long)s->svr.qEDNS)) return 0;
if(!ssl_printf(ssl, "num.query.edns.DO"SQ"%lu\n",
(unsigned long)s->svr.qEDNS_DO)) return 0;
/* RCODE */
for(i=0; i<STATS_RCODE_NUM; i++) {
/* Always include RCODEs 0-5 */
if(inhibit_zero && i > LDNS_RCODE_REFUSED && s->svr.ans_rcode[i] == 0)
continue;
lt = sldns_lookup_by_id(sldns_rcodes, i);
if(lt && lt->name) {
snprintf(nm, sizeof(nm), "%s", lt->name);
} else {
snprintf(nm, sizeof(nm), "RCODE%d", i);
}
if(!ssl_printf(ssl, "num.answer.rcode.%s"SQ"%lu\n",
nm, (unsigned long)s->svr.ans_rcode[i])) return 0;
}
if(!inhibit_zero || s->svr.ans_rcode_nodata) {
if(!ssl_printf(ssl, "num.answer.rcode.nodata"SQ"%lu\n",
(unsigned long)s->svr.ans_rcode_nodata)) return 0;
}
/* validation */
if(!ssl_printf(ssl, "num.answer.secure"SQ"%lu\n",
(unsigned long)s->svr.ans_secure)) return 0;
if(!ssl_printf(ssl, "num.answer.bogus"SQ"%lu\n",
(unsigned long)s->svr.ans_bogus)) return 0;
if(!ssl_printf(ssl, "num.rrset.bogus"SQ"%lu\n",
(unsigned long)s->svr.rrset_bogus)) return 0;
/* threat detection */
if(!ssl_printf(ssl, "unwanted.queries"SQ"%lu\n",
(unsigned long)s->svr.unwanted_queries)) return 0;
if(!ssl_printf(ssl, "unwanted.replies"SQ"%lu\n",
(unsigned long)s->svr.unwanted_replies)) return 0;
/* cache counts */
if(!ssl_printf(ssl, "msg.cache.count"SQ"%u\n",
(unsigned)s->svr.msg_cache_count)) return 0;
if(!ssl_printf(ssl, "rrset.cache.count"SQ"%u\n",
(unsigned)s->svr.rrset_cache_count)) return 0;
if(!ssl_printf(ssl, "infra.cache.count"SQ"%u\n",
(unsigned)s->svr.infra_cache_count)) return 0;
if(!ssl_printf(ssl, "key.cache.count"SQ"%u\n",
(unsigned)s->svr.key_cache_count)) return 0;
return 1;
}
/** do the stats command */
static void
do_stats(SSL* ssl, struct daemon_remote* rc, int reset)
{
struct daemon* daemon = rc->worker->daemon;
struct stats_info total;
struct stats_info s;
int i;
log_assert(daemon->num > 0);
/* gather all thread statistics in one place */
for(i=0; i<daemon->num; i++) {
server_stats_obtain(rc->worker, daemon->workers[i], &s, reset);
if(!print_thread_stats(ssl, i, &s))
return;
if(i == 0)
total = s;
else server_stats_add(&total, &s);
}
/* print the thread statistics */
total.mesh_time_median /= (double)daemon->num;
if(!print_stats(ssl, "total", &total))
return;
if(!print_uptime(ssl, rc->worker, reset))
return;
if(daemon->cfg->stat_extended) {
if(!print_mem(ssl, rc->worker, daemon))
return;
if(!print_hist(ssl, &total))
return;
if(!print_ext(ssl, &total))
return;
}
}
/** parse commandline argument domain name */
static int
parse_arg_name(SSL* ssl, char* str, uint8_t** res, size_t* len, int* labs)
{
uint8_t nm[LDNS_MAX_DOMAINLEN+1];
size_t nmlen = sizeof(nm);
int status;
*res = NULL;
*len = 0;
*labs = 0;
status = sldns_str2wire_dname_buf(str, nm, &nmlen);
if(status != 0) {
ssl_printf(ssl, "error cannot parse name %s at %d: %s\n", str,
LDNS_WIREPARSE_OFFSET(status),
sldns_get_errorstr_parse(status));
return 0;
}
*res = memdup(nm, nmlen);
if(!*res) {
ssl_printf(ssl, "error out of memory\n");
return 0;
}
*labs = dname_count_size_labels(*res, len);
return 1;
}
/** find second argument, modifies string */
static int
find_arg2(SSL* ssl, char* arg, char** arg2)
{
char* as = strchr(arg, ' ');
char* at = strchr(arg, '\t');
if(as && at) {
if(at < as)
as = at;
as[0]=0;
*arg2 = skipwhite(as+1);
} else if(as) {
as[0]=0;
*arg2 = skipwhite(as+1);
} else if(at) {
at[0]=0;
*arg2 = skipwhite(at+1);
} else {
ssl_printf(ssl, "error could not find next argument "
"after %s\n", arg);
return 0;
}
return 1;
}
/** Add a new zone */
static void
do_zone_add(SSL* ssl, struct worker* worker, char* arg)
{
uint8_t* nm;
int nmlabs;
size_t nmlen;
char* arg2;
enum localzone_type t;
struct local_zone* z;
if(!find_arg2(ssl, arg, &arg2))
return;
if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs))
return;
if(!local_zone_str2type(arg2, &t)) {
ssl_printf(ssl, "error not a zone type. %s\n", arg2);
free(nm);
return;
}
lock_rw_wrlock(&worker->daemon->local_zones->lock);
if((z=local_zones_find(worker->daemon->local_zones, nm, nmlen,
nmlabs, LDNS_RR_CLASS_IN))) {
/* already present in tree */
lock_rw_wrlock(&z->lock);
z->type = t; /* update type anyway */
lock_rw_unlock(&z->lock);
free(nm);
lock_rw_unlock(&worker->daemon->local_zones->lock);
send_ok(ssl);
return;
}
if(!local_zones_add_zone(worker->daemon->local_zones, nm, nmlen,
nmlabs, LDNS_RR_CLASS_IN, t)) {
lock_rw_unlock(&worker->daemon->local_zones->lock);
ssl_printf(ssl, "error out of memory\n");
return;
}
lock_rw_unlock(&worker->daemon->local_zones->lock);
send_ok(ssl);
}
/** Remove a zone */
static void
do_zone_remove(SSL* ssl, struct worker* worker, char* arg)
{
uint8_t* nm;
int nmlabs;
size_t nmlen;
struct local_zone* z;
if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs))
return;
lock_rw_wrlock(&worker->daemon->local_zones->lock);
if((z=local_zones_find(worker->daemon->local_zones, nm, nmlen,
nmlabs, LDNS_RR_CLASS_IN))) {
/* present in tree */
local_zones_del_zone(worker->daemon->local_zones, z);
}
lock_rw_unlock(&worker->daemon->local_zones->lock);
free(nm);
send_ok(ssl);
}
/** Add new RR data */
static void
do_data_add(SSL* ssl, struct worker* worker, char* arg)
{
if(!local_zones_add_RR(worker->daemon->local_zones, arg)) {
ssl_printf(ssl,"error in syntax or out of memory, %s\n", arg);
return;
}
send_ok(ssl);
}
/** Remove RR data */
static void
do_data_remove(SSL* ssl, struct worker* worker, char* arg)
{
uint8_t* nm;
int nmlabs;
size_t nmlen;
if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs))
return;
local_zones_del_data(worker->daemon->local_zones, nm,
nmlen, nmlabs, LDNS_RR_CLASS_IN);
free(nm);
send_ok(ssl);
}
/** cache lookup of nameservers */
static void
do_lookup(SSL* ssl, struct worker* worker, char* arg)
{
uint8_t* nm;
int nmlabs;
size_t nmlen;
if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs))
return;
(void)print_deleg_lookup(ssl, worker, nm, nmlen, nmlabs);
free(nm);
}
/** flush something from rrset and msg caches */
static void
do_cache_remove(struct worker* worker, uint8_t* nm, size_t nmlen,
uint16_t t, uint16_t c)
{
hashvalue_t h;
struct query_info k;
rrset_cache_remove(worker->env.rrset_cache, nm, nmlen, t, c, 0);
if(t == LDNS_RR_TYPE_SOA)
rrset_cache_remove(worker->env.rrset_cache, nm, nmlen, t, c,
PACKED_RRSET_SOA_NEG);
k.qname = nm;
k.qname_len = nmlen;
k.qtype = t;
k.qclass = c;
h = query_info_hash(&k, 0);
slabhash_remove(worker->env.msg_cache, h, &k);
if(t == LDNS_RR_TYPE_AAAA) {
/* for AAAA also flush dns64 bit_cd packet */
h = query_info_hash(&k, BIT_CD);
slabhash_remove(worker->env.msg_cache, h, &k);
}
}
/** flush a type */
static void
do_flush_type(SSL* ssl, struct worker* worker, char* arg)
{
uint8_t* nm;
int nmlabs;
size_t nmlen;
char* arg2;
uint16_t t;
if(!find_arg2(ssl, arg, &arg2))
return;
if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs))
return;
t = sldns_get_rr_type_by_name(arg2);
do_cache_remove(worker, nm, nmlen, t, LDNS_RR_CLASS_IN);
free(nm);
send_ok(ssl);
}
/** flush statistics */
static void
do_flush_stats(SSL* ssl, struct worker* worker)
{
worker_stats_clear(worker);
send_ok(ssl);
}
/**
* Local info for deletion functions
*/
struct del_info {
/** worker */
struct worker* worker;
/** name to delete */
uint8_t* name;
/** length */
size_t len;
/** labels */
int labs;
/** time to invalidate to */
time_t expired;
/** number of rrsets removed */
size_t num_rrsets;
/** number of msgs removed */
size_t num_msgs;
/** number of key entries removed */
size_t num_keys;
/** length of addr */
socklen_t addrlen;
/** socket address for host deletion */
struct sockaddr_storage addr;
};
/** callback to delete hosts in infra cache */
static void
infra_del_host(struct lruhash_entry* e, void* arg)
{
/* entry is locked */
struct del_info* inf = (struct del_info*)arg;
struct infra_key* k = (struct infra_key*)e->key;
if(sockaddr_cmp(&inf->addr, inf->addrlen, &k->addr, k->addrlen) == 0) {
struct infra_data* d = (struct infra_data*)e->data;
d->probedelay = 0;
d->timeout_A = 0;
d->timeout_AAAA = 0;
d->timeout_other = 0;
rtt_init(&d->rtt);
if(d->ttl > inf->expired) {
d->ttl = inf->expired;
inf->num_keys++;
}
}
}
/** flush infra cache */
static void
do_flush_infra(SSL* ssl, struct worker* worker, char* arg)
{
struct sockaddr_storage addr;
socklen_t len;
struct del_info inf;
if(strcmp(arg, "all") == 0) {
slabhash_clear(worker->env.infra_cache->hosts);
send_ok(ssl);
return;
}
if(!ipstrtoaddr(arg, UNBOUND_DNS_PORT, &addr, &len)) {
(void)ssl_printf(ssl, "error parsing ip addr: '%s'\n", arg);
return;
}
/* delete all entries from cache */
/* what we do is to set them all expired */
inf.worker = worker;
inf.name = 0;
inf.len = 0;
inf.labs = 0;
inf.expired = *worker->env.now;
inf.expired -= 3; /* handle 3 seconds skew between threads */
inf.num_rrsets = 0;
inf.num_msgs = 0;
inf.num_keys = 0;
inf.addrlen = len;
memmove(&inf.addr, &addr, len);
slabhash_traverse(worker->env.infra_cache->hosts, 1, &infra_del_host,
&inf);
send_ok(ssl);
}
/** flush requestlist */
static void
do_flush_requestlist(SSL* ssl, struct worker* worker)
{
mesh_delete_all(worker->env.mesh);
send_ok(ssl);
}
/** callback to delete rrsets in a zone */
static void
zone_del_rrset(struct lruhash_entry* e, void* arg)
{
/* entry is locked */
struct del_info* inf = (struct del_info*)arg;
struct ub_packed_rrset_key* k = (struct ub_packed_rrset_key*)e->key;
if(dname_subdomain_c(k->rk.dname, inf->name)) {
struct packed_rrset_data* d =
(struct packed_rrset_data*)e->data;
if(d->ttl > inf->expired) {
d->ttl = inf->expired;
inf->num_rrsets++;
}
}
}
/** callback to delete messages in a zone */
static void
zone_del_msg(struct lruhash_entry* e, void* arg)
{
/* entry is locked */
struct del_info* inf = (struct del_info*)arg;
struct msgreply_entry* k = (struct msgreply_entry*)e->key;
if(dname_subdomain_c(k->key.qname, inf->name)) {
struct reply_info* d = (struct reply_info*)e->data;
if(d->ttl > inf->expired) {
d->ttl = inf->expired;
inf->num_msgs++;
}
}
}
/** callback to delete keys in zone */
static void
zone_del_kcache(struct lruhash_entry* e, void* arg)
{
/* entry is locked */
struct del_info* inf = (struct del_info*)arg;
struct key_entry_key* k = (struct key_entry_key*)e->key;
if(dname_subdomain_c(k->name, inf->name)) {
struct key_entry_data* d = (struct key_entry_data*)e->data;
if(d->ttl > inf->expired) {
d->ttl = inf->expired;
inf->num_keys++;
}
}
}
/** remove all rrsets and keys from zone from cache */
static void
do_flush_zone(SSL* ssl, struct worker* worker, char* arg)
{
uint8_t* nm;
int nmlabs;
size_t nmlen;
struct del_info inf;
if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs))
return;
/* delete all RRs and key entries from zone */
/* what we do is to set them all expired */
inf.worker = worker;
inf.name = nm;
inf.len = nmlen;
inf.labs = nmlabs;
inf.expired = *worker->env.now;
inf.expired -= 3; /* handle 3 seconds skew between threads */
inf.num_rrsets = 0;
inf.num_msgs = 0;
inf.num_keys = 0;
slabhash_traverse(&worker->env.rrset_cache->table, 1,
&zone_del_rrset, &inf);
slabhash_traverse(worker->env.msg_cache, 1, &zone_del_msg, &inf);
/* and validator cache */
if(worker->env.key_cache) {
slabhash_traverse(worker->env.key_cache->slab, 1,
&zone_del_kcache, &inf);
}
free(nm);
(void)ssl_printf(ssl, "ok removed %lu rrsets, %lu messages "
"and %lu key entries\n", (unsigned long)inf.num_rrsets,
(unsigned long)inf.num_msgs, (unsigned long)inf.num_keys);
}
/** callback to delete bogus rrsets */
static void
bogus_del_rrset(struct lruhash_entry* e, void* arg)
{
/* entry is locked */
struct del_info* inf = (struct del_info*)arg;
struct packed_rrset_data* d = (struct packed_rrset_data*)e->data;
if(d->security == sec_status_bogus) {
d->ttl = inf->expired;
inf->num_rrsets++;
}
}
/** callback to delete bogus messages */
static void
bogus_del_msg(struct lruhash_entry* e, void* arg)
{
/* entry is locked */
struct del_info* inf = (struct del_info*)arg;
struct reply_info* d = (struct reply_info*)e->data;
if(d->security == sec_status_bogus) {
d->ttl = inf->expired;
inf->num_msgs++;
}
}
/** callback to delete bogus keys */
static void
bogus_del_kcache(struct lruhash_entry* e, void* arg)
{
/* entry is locked */
struct del_info* inf = (struct del_info*)arg;
struct key_entry_data* d = (struct key_entry_data*)e->data;
if(d->isbad) {
d->ttl = inf->expired;
inf->num_keys++;
}
}
/** remove all bogus rrsets, msgs and keys from cache */
static void
do_flush_bogus(SSL* ssl, struct worker* worker)
{
struct del_info inf;
/* what we do is to set them all expired */
inf.worker = worker;
inf.expired = *worker->env.now;
inf.expired -= 3; /* handle 3 seconds skew between threads */
inf.num_rrsets = 0;
inf.num_msgs = 0;
inf.num_keys = 0;
slabhash_traverse(&worker->env.rrset_cache->table, 1,
&bogus_del_rrset, &inf);
slabhash_traverse(worker->env.msg_cache, 1, &bogus_del_msg, &inf);
/* and validator cache */
if(worker->env.key_cache) {
slabhash_traverse(worker->env.key_cache->slab, 1,
&bogus_del_kcache, &inf);
}
(void)ssl_printf(ssl, "ok removed %lu rrsets, %lu messages "
"and %lu key entries\n", (unsigned long)inf.num_rrsets,
(unsigned long)inf.num_msgs, (unsigned long)inf.num_keys);
}
/** callback to delete negative and servfail rrsets */
static void
negative_del_rrset(struct lruhash_entry* e, void* arg)
{
/* entry is locked */
struct del_info* inf = (struct del_info*)arg;
struct ub_packed_rrset_key* k = (struct ub_packed_rrset_key*)e->key;
struct packed_rrset_data* d = (struct packed_rrset_data*)e->data;
/* delete the parentside negative cache rrsets,
* these are namerserver rrsets that failed lookup, rdata empty */
if((k->rk.flags & PACKED_RRSET_PARENT_SIDE) && d->count == 1 &&
d->rrsig_count == 0 && d->rr_len[0] == 0) {
d->ttl = inf->expired;
inf->num_rrsets++;
}
}
/** callback to delete negative and servfail messages */
static void
negative_del_msg(struct lruhash_entry* e, void* arg)
{
/* entry is locked */
struct del_info* inf = (struct del_info*)arg;
struct reply_info* d = (struct reply_info*)e->data;
/* rcode not NOERROR: NXDOMAIN, SERVFAIL, ..: an nxdomain or error
* or NOERROR rcode with ANCOUNT==0: a NODATA answer */
if(FLAGS_GET_RCODE(d->flags) != 0 || d->an_numrrsets == 0) {
d->ttl = inf->expired;
inf->num_msgs++;
}
}
/** callback to delete negative key entries */
static void
negative_del_kcache(struct lruhash_entry* e, void* arg)
{
/* entry is locked */
struct del_info* inf = (struct del_info*)arg;
struct key_entry_data* d = (struct key_entry_data*)e->data;
/* could be bad because of lookup failure on the DS, DNSKEY, which
* was nxdomain or servfail, and thus a result of negative lookups */
if(d->isbad) {
d->ttl = inf->expired;
inf->num_keys++;
}
}
/** remove all negative(NODATA,NXDOMAIN), and servfail messages from cache */
static void
do_flush_negative(SSL* ssl, struct worker* worker)
{
struct del_info inf;
/* what we do is to set them all expired */
inf.worker = worker;
inf.expired = *worker->env.now;
inf.expired -= 3; /* handle 3 seconds skew between threads */
inf.num_rrsets = 0;
inf.num_msgs = 0;
inf.num_keys = 0;
slabhash_traverse(&worker->env.rrset_cache->table, 1,
&negative_del_rrset, &inf);
slabhash_traverse(worker->env.msg_cache, 1, &negative_del_msg, &inf);
/* and validator cache */
if(worker->env.key_cache) {
slabhash_traverse(worker->env.key_cache->slab, 1,
&negative_del_kcache, &inf);
}
(void)ssl_printf(ssl, "ok removed %lu rrsets, %lu messages "
"and %lu key entries\n", (unsigned long)inf.num_rrsets,
(unsigned long)inf.num_msgs, (unsigned long)inf.num_keys);
}
/** remove name rrset from cache */
static void
do_flush_name(SSL* ssl, struct worker* w, char* arg)
{
uint8_t* nm;
int nmlabs;
size_t nmlen;
if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs))
return;
do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_A, LDNS_RR_CLASS_IN);
do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_AAAA, LDNS_RR_CLASS_IN);
do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_NS, LDNS_RR_CLASS_IN);
do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_SOA, LDNS_RR_CLASS_IN);
do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_CNAME, LDNS_RR_CLASS_IN);
do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_DNAME, LDNS_RR_CLASS_IN);
do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_MX, LDNS_RR_CLASS_IN);
do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_PTR, LDNS_RR_CLASS_IN);
do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_SRV, LDNS_RR_CLASS_IN);
do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_NAPTR, LDNS_RR_CLASS_IN);
free(nm);
send_ok(ssl);
}
/** printout a delegation point info */
static int
ssl_print_name_dp(SSL* ssl, const char* str, uint8_t* nm, uint16_t dclass,
struct delegpt* dp)
{
char buf[257];
struct delegpt_ns* ns;
struct delegpt_addr* a;
int f = 0;
if(str) { /* print header for forward, stub */
char* c = sldns_wire2str_class(dclass);
dname_str(nm, buf);
if(!ssl_printf(ssl, "%s %s %s ", buf, (c?c:"CLASS??"), str)) {
free(c);
return 0;
}
free(c);
}
for(ns = dp->nslist; ns; ns = ns->next) {
dname_str(ns->name, buf);
if(!ssl_printf(ssl, "%s%s", (f?" ":""), buf))
return 0;
f = 1;
}
for(a = dp->target_list; a; a = a->next_target) {
addr_to_str(&a->addr, a->addrlen, buf, sizeof(buf));
if(!ssl_printf(ssl, "%s%s", (f?" ":""), buf))
return 0;
f = 1;
}
return ssl_printf(ssl, "\n");
}
/** print root forwards */
static int
print_root_fwds(SSL* ssl, struct iter_forwards* fwds, uint8_t* root)
{
struct delegpt* dp;
dp = forwards_lookup(fwds, root, LDNS_RR_CLASS_IN);
if(!dp)
return ssl_printf(ssl, "off (using root hints)\n");
/* if dp is returned it must be the root */
log_assert(query_dname_compare(dp->name, root)==0);
return ssl_print_name_dp(ssl, NULL, root, LDNS_RR_CLASS_IN, dp);
}
/** parse args into delegpt */
static struct delegpt*
parse_delegpt(SSL* ssl, char* args, uint8_t* nm, int allow_names)
{
/* parse args and add in */
char* p = args;
char* todo;
struct delegpt* dp = delegpt_create_mlc(nm);
struct sockaddr_storage addr;
socklen_t addrlen;
if(!dp) {
(void)ssl_printf(ssl, "error out of memory\n");
return NULL;
}
while(p) {
todo = p;
p = strchr(p, ' '); /* find next spot, if any */
if(p) {
*p++ = 0; /* end this spot */
p = skipwhite(p); /* position at next spot */
}
/* parse address */
if(!extstrtoaddr(todo, &addr, &addrlen)) {
if(allow_names) {
uint8_t* n = NULL;
size_t ln;
int lb;
if(!parse_arg_name(ssl, todo, &n, &ln, &lb)) {
(void)ssl_printf(ssl, "error cannot "
"parse IP address or name "
"'%s'\n", todo);
delegpt_free_mlc(dp);
return NULL;
}
if(!delegpt_add_ns_mlc(dp, n, 0)) {
(void)ssl_printf(ssl, "error out of memory\n");
free(n);
delegpt_free_mlc(dp);
return NULL;
}
free(n);
} else {
(void)ssl_printf(ssl, "error cannot parse"
" IP address '%s'\n", todo);
delegpt_free_mlc(dp);
return NULL;
}
} else {
/* add address */
if(!delegpt_add_addr_mlc(dp, &addr, addrlen, 0, 0)) {
(void)ssl_printf(ssl, "error out of memory\n");
delegpt_free_mlc(dp);
return NULL;
}
}
}
dp->has_parent_side_NS = 1;
return dp;
}
/** do the status command */
static void
do_forward(SSL* ssl, struct worker* worker, char* args)
{
struct iter_forwards* fwd = worker->env.fwds;
uint8_t* root = (uint8_t*)"\000";
if(!fwd) {
(void)ssl_printf(ssl, "error: structure not allocated\n");
return;
}
if(args == NULL || args[0] == 0) {
(void)print_root_fwds(ssl, fwd, root);
return;
}
/* set root forwards for this thread. since we are in remote control
* the actual mesh is not running, so we can freely edit it. */
/* delete all the existing queries first */
mesh_delete_all(worker->env.mesh);
if(strcmp(args, "off") == 0) {
forwards_delete_zone(fwd, LDNS_RR_CLASS_IN, root);
} else {
struct delegpt* dp;
if(!(dp = parse_delegpt(ssl, args, root, 0)))
return;
if(!forwards_add_zone(fwd, LDNS_RR_CLASS_IN, dp)) {
(void)ssl_printf(ssl, "error out of memory\n");
return;
}
}
send_ok(ssl);
}
static int
parse_fs_args(SSL* ssl, char* args, uint8_t** nm, struct delegpt** dp,
int* insecure, int* prime)
{
char* zonename;
char* rest;
size_t nmlen;
int nmlabs;
/* parse all -x args */
while(args[0] == '+') {
if(!find_arg2(ssl, args, &rest))
return 0;
while(*(++args) != 0) {
if(*args == 'i' && insecure)
*insecure = 1;
else if(*args == 'p' && prime)
*prime = 1;
else {
(void)ssl_printf(ssl, "error: unknown option %s\n", args);
return 0;
}
}
args = rest;
}
/* parse name */
if(dp) {
if(!find_arg2(ssl, args, &rest))
return 0;
zonename = args;
args = rest;
} else zonename = args;
if(!parse_arg_name(ssl, zonename, nm, &nmlen, &nmlabs))
return 0;
/* parse dp */
if(dp) {
if(!(*dp = parse_delegpt(ssl, args, *nm, 1))) {
free(*nm);
return 0;
}
}
return 1;
}
/** do the forward_add command */
static void
do_forward_add(SSL* ssl, struct worker* worker, char* args)
{
struct iter_forwards* fwd = worker->env.fwds;
int insecure = 0;
uint8_t* nm = NULL;
struct delegpt* dp = NULL;
if(!parse_fs_args(ssl, args, &nm, &dp, &insecure, NULL))
return;
if(insecure && worker->env.anchors) {
if(!anchors_add_insecure(worker->env.anchors, LDNS_RR_CLASS_IN,
nm)) {
(void)ssl_printf(ssl, "error out of memory\n");
delegpt_free_mlc(dp);
free(nm);
return;
}
}
if(!forwards_add_zone(fwd, LDNS_RR_CLASS_IN, dp)) {
(void)ssl_printf(ssl, "error out of memory\n");
free(nm);
return;
}
free(nm);
send_ok(ssl);
}
/** do the forward_remove command */
static void
do_forward_remove(SSL* ssl, struct worker* worker, char* args)
{
struct iter_forwards* fwd = worker->env.fwds;
int insecure = 0;
uint8_t* nm = NULL;
if(!parse_fs_args(ssl, args, &nm, NULL, &insecure, NULL))
return;
if(insecure && worker->env.anchors)
anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN,
nm);
forwards_delete_zone(fwd, LDNS_RR_CLASS_IN, nm);
free(nm);
send_ok(ssl);
}
/** do the stub_add command */
static void
do_stub_add(SSL* ssl, struct worker* worker, char* args)
{
struct iter_forwards* fwd = worker->env.fwds;
int insecure = 0, prime = 0;
uint8_t* nm = NULL;
struct delegpt* dp = NULL;
if(!parse_fs_args(ssl, args, &nm, &dp, &insecure, &prime))
return;
if(insecure && worker->env.anchors) {
if(!anchors_add_insecure(worker->env.anchors, LDNS_RR_CLASS_IN,
nm)) {
(void)ssl_printf(ssl, "error out of memory\n");
delegpt_free_mlc(dp);
free(nm);
return;
}
}
if(!forwards_add_stub_hole(fwd, LDNS_RR_CLASS_IN, nm)) {
if(insecure && worker->env.anchors)
anchors_delete_insecure(worker->env.anchors,
LDNS_RR_CLASS_IN, nm);
(void)ssl_printf(ssl, "error out of memory\n");
delegpt_free_mlc(dp);
free(nm);
return;
}
if(!hints_add_stub(worker->env.hints, LDNS_RR_CLASS_IN, dp, !prime)) {
(void)ssl_printf(ssl, "error out of memory\n");
forwards_delete_stub_hole(fwd, LDNS_RR_CLASS_IN, nm);
if(insecure && worker->env.anchors)
anchors_delete_insecure(worker->env.anchors,
LDNS_RR_CLASS_IN, nm);
free(nm);
return;
}
free(nm);
send_ok(ssl);
}
/** do the stub_remove command */
static void
do_stub_remove(SSL* ssl, struct worker* worker, char* args)
{
struct iter_forwards* fwd = worker->env.fwds;
int insecure = 0;
uint8_t* nm = NULL;
if(!parse_fs_args(ssl, args, &nm, NULL, &insecure, NULL))
return;
if(insecure && worker->env.anchors)
anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN,
nm);
forwards_delete_stub_hole(fwd, LDNS_RR_CLASS_IN, nm);
hints_delete_stub(worker->env.hints, LDNS_RR_CLASS_IN, nm);
free(nm);
send_ok(ssl);
}
/** do the insecure_add command */
static void
do_insecure_add(SSL* ssl, struct worker* worker, char* arg)
{
size_t nmlen;
int nmlabs;
uint8_t* nm = NULL;
if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs))
return;
if(worker->env.anchors) {
if(!anchors_add_insecure(worker->env.anchors,
LDNS_RR_CLASS_IN, nm)) {
(void)ssl_printf(ssl, "error out of memory\n");
free(nm);
return;
}
}
free(nm);
send_ok(ssl);
}
/** do the insecure_remove command */
static void
do_insecure_remove(SSL* ssl, struct worker* worker, char* arg)
{
size_t nmlen;
int nmlabs;
uint8_t* nm = NULL;
if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs))
return;
if(worker->env.anchors)
anchors_delete_insecure(worker->env.anchors,
LDNS_RR_CLASS_IN, nm);
free(nm);
send_ok(ssl);
}
static void
do_insecure_list(SSL* ssl, struct worker* worker)
{
char buf[257];
struct trust_anchor* a;
if(worker->env.anchors) {
RBTREE_FOR(a, struct trust_anchor*, worker->env.anchors->tree) {
if(a->numDS == 0 && a->numDNSKEY == 0) {
dname_str(a->name, buf);
ssl_printf(ssl, "%s\n", buf);
}
}
}
}
/** do the status command */
static void
do_status(SSL* ssl, struct worker* worker)
{
int i;
time_t uptime;
if(!ssl_printf(ssl, "version: %s\n", PACKAGE_VERSION))
return;
if(!ssl_printf(ssl, "verbosity: %d\n", verbosity))
return;
if(!ssl_printf(ssl, "threads: %d\n", worker->daemon->num))
return;
if(!ssl_printf(ssl, "modules: %d [", worker->daemon->mods.num))
return;
for(i=0; i<worker->daemon->mods.num; i++) {
if(!ssl_printf(ssl, " %s", worker->daemon->mods.mod[i]->name))
return;
}
if(!ssl_printf(ssl, " ]\n"))
return;
uptime = (time_t)time(NULL) - (time_t)worker->daemon->time_boot.tv_sec;
if(!ssl_printf(ssl, "uptime: " ARG_LL "d seconds\n", (long long)uptime))
return;
if(!ssl_printf(ssl, "options:%s%s\n" ,
(worker->daemon->reuseport?" reuseport":""),
(worker->daemon->rc->accept_list?" control(ssl)":"")))
return;
if(!ssl_printf(ssl, "unbound (pid %d) is running...\n",
(int)getpid()))
return;
}
/** get age for the mesh state */
static void
get_mesh_age(struct mesh_state* m, char* buf, size_t len,
struct module_env* env)
{
if(m->reply_list) {
struct timeval d;
struct mesh_reply* r = m->reply_list;
/* last reply is the oldest */
while(r && r->next)
r = r->next;
timeval_subtract(&d, env->now_tv, &r->start_time);
snprintf(buf, len, ARG_LL "d.%6.6d",
(long long)d.tv_sec, (int)d.tv_usec);
} else {
snprintf(buf, len, "-");
}
}
/** get status of a mesh state */
static void
get_mesh_status(struct mesh_area* mesh, struct mesh_state* m,
char* buf, size_t len)
{
enum module_ext_state s = m->s.ext_state[m->s.curmod];
const char *modname = mesh->mods.mod[m->s.curmod]->name;
size_t l;
if(strcmp(modname, "iterator") == 0 && s == module_wait_reply &&
m->s.minfo[m->s.curmod]) {
/* break into iterator to find out who its waiting for */
struct iter_qstate* qstate = (struct iter_qstate*)
m->s.minfo[m->s.curmod];
struct outbound_list* ol = &qstate->outlist;
struct outbound_entry* e;
snprintf(buf, len, "%s wait for", modname);
l = strlen(buf);
buf += l; len -= l;
if(ol->first == NULL)
snprintf(buf, len, " (empty_list)");
for(e = ol->first; e; e = e->next) {
snprintf(buf, len, " ");
l = strlen(buf);
buf += l; len -= l;
addr_to_str(&e->qsent->addr, e->qsent->addrlen,
buf, len);
l = strlen(buf);
buf += l; len -= l;
}
} else if(s == module_wait_subquery) {
/* look in subs from mesh state to see what */
char nm[257];
struct mesh_state_ref* sub;
snprintf(buf, len, "%s wants", modname);
l = strlen(buf);
buf += l; len -= l;
if(m->sub_set.count == 0)
snprintf(buf, len, " (empty_list)");
RBTREE_FOR(sub, struct mesh_state_ref*, &m->sub_set) {
char* t = sldns_wire2str_type(sub->s->s.qinfo.qtype);
char* c = sldns_wire2str_class(sub->s->s.qinfo.qclass);
dname_str(sub->s->s.qinfo.qname, nm);
snprintf(buf, len, " %s %s %s", (t?t:"TYPE??"),
(c?c:"CLASS??"), nm);
l = strlen(buf);
buf += l; len -= l;
free(t);
free(c);
}
} else {
snprintf(buf, len, "%s is %s", modname, strextstate(s));
}
}
/** do the dump_requestlist command */
static void
do_dump_requestlist(SSL* ssl, struct worker* worker)
{
struct mesh_area* mesh;
struct mesh_state* m;
int num = 0;
char buf[257];
char timebuf[32];
char statbuf[10240];
if(!ssl_printf(ssl, "thread #%d\n", worker->thread_num))
return;
if(!ssl_printf(ssl, "# type cl name seconds module status\n"))
return;
/* show worker mesh contents */
mesh = worker->env.mesh;
if(!mesh) return;
RBTREE_FOR(m, struct mesh_state*, &mesh->all) {
char* t = sldns_wire2str_type(m->s.qinfo.qtype);
char* c = sldns_wire2str_class(m->s.qinfo.qclass);
dname_str(m->s.qinfo.qname, buf);
get_mesh_age(m, timebuf, sizeof(timebuf), &worker->env);
get_mesh_status(mesh, m, statbuf, sizeof(statbuf));
if(!ssl_printf(ssl, "%3d %4s %2s %s %s %s\n",
num, (t?t:"TYPE??"), (c?c:"CLASS??"), buf, timebuf,
statbuf)) {
free(t);
free(c);
return;
}
num++;
free(t);
free(c);
}
}
/** structure for argument data for dump infra host */
struct infra_arg {
/** the infra cache */
struct infra_cache* infra;
/** the SSL connection */
SSL* ssl;
/** the time now */
time_t now;
/** ssl failure? stop writing and skip the rest. If the tcp
* connection is broken, and writes fail, we then stop writing. */
int ssl_failed;
};
/** callback for every host element in the infra cache */
static void
dump_infra_host(struct lruhash_entry* e, void* arg)
{
struct infra_arg* a = (struct infra_arg*)arg;
struct infra_key* k = (struct infra_key*)e->key;
struct infra_data* d = (struct infra_data*)e->data;
char ip_str[1024];
char name[257];
if(a->ssl_failed)
return;
addr_to_str(&k->addr, k->addrlen, ip_str, sizeof(ip_str));
dname_str(k->zonename, name);
/* skip expired stuff (only backed off) */
if(d->ttl < a->now) {
if(d->rtt.rto >= USEFUL_SERVER_TOP_TIMEOUT) {
if(!ssl_printf(a->ssl, "%s %s expired rto %d\n", ip_str,
name, d->rtt.rto)) {
a->ssl_failed = 1;
return;
}
}
return;
}
if(!ssl_printf(a->ssl, "%s %s ttl %lu ping %d var %d rtt %d rto %d "
"tA %d tAAAA %d tother %d "
"ednsknown %d edns %d delay %d lame dnssec %d rec %d A %d "
"other %d\n", ip_str, name, (unsigned long)(d->ttl - a->now),
d->rtt.srtt, d->rtt.rttvar, rtt_notimeout(&d->rtt), d->rtt.rto,
d->timeout_A, d->timeout_AAAA, d->timeout_other,
(int)d->edns_lame_known, (int)d->edns_version,
(int)(a->now<d->probedelay?(d->probedelay - a->now):0),
(int)d->isdnsseclame, (int)d->rec_lame, (int)d->lame_type_A,
(int)d->lame_other)) {
a->ssl_failed = 1;
return;
}
}
/** do the dump_infra command */
static void
do_dump_infra(SSL* ssl, struct worker* worker)
{
struct infra_arg arg;
arg.infra = worker->env.infra_cache;
arg.ssl = ssl;
arg.now = *worker->env.now;
arg.ssl_failed = 0;
slabhash_traverse(arg.infra->hosts, 0, &dump_infra_host, (void*)&arg);
}
/** do the log_reopen command */
static void
do_log_reopen(SSL* ssl, struct worker* worker)
{
struct config_file* cfg = worker->env.cfg;
send_ok(ssl);
log_init(cfg->logfile, cfg->use_syslog, cfg->chrootdir);
}
/** do the set_option command */
static void
do_set_option(SSL* ssl, struct worker* worker, char* arg)
{
char* arg2;
if(!find_arg2(ssl, arg, &arg2))
return;
if(!config_set_option(worker->env.cfg, arg, arg2)) {
(void)ssl_printf(ssl, "error setting option\n");
return;
}
send_ok(ssl);
}
/* routine to printout option values over SSL */
void remote_get_opt_ssl(char* line, void* arg)
{
SSL* ssl = (SSL*)arg;
(void)ssl_printf(ssl, "%s\n", line);
}
/** do the get_option command */
static void
do_get_option(SSL* ssl, struct worker* worker, char* arg)
{
int r;
r = config_get_option(worker->env.cfg, arg, remote_get_opt_ssl, ssl);
if(!r) {
(void)ssl_printf(ssl, "error unknown option\n");
return;
}
}
/** do the list_forwards command */
static void
do_list_forwards(SSL* ssl, struct worker* worker)
{
/* since its a per-worker structure no locks needed */
struct iter_forwards* fwds = worker->env.fwds;
struct iter_forward_zone* z;
struct trust_anchor* a;
int insecure;
RBTREE_FOR(z, struct iter_forward_zone*, fwds->tree) {
if(!z->dp) continue; /* skip empty marker for stub */
/* see if it is insecure */
insecure = 0;
if(worker->env.anchors &&
(a=anchor_find(worker->env.anchors, z->name,
z->namelabs, z->namelen, z->dclass))) {
if(!a->keylist && !a->numDS && !a->numDNSKEY)
insecure = 1;
lock_basic_unlock(&a->lock);
}
if(!ssl_print_name_dp(ssl, (insecure?"forward +i":"forward"),
z->name, z->dclass, z->dp))
return;
}
}
/** do the list_stubs command */
static void
do_list_stubs(SSL* ssl, struct worker* worker)
{
struct iter_hints_stub* z;
struct trust_anchor* a;
int insecure;
char str[32];
RBTREE_FOR(z, struct iter_hints_stub*, &worker->env.hints->tree) {
/* see if it is insecure */
insecure = 0;
if(worker->env.anchors &&
(a=anchor_find(worker->env.anchors, z->node.name,
z->node.labs, z->node.len, z->node.dclass))) {
if(!a->keylist && !a->numDS && !a->numDNSKEY)
insecure = 1;
lock_basic_unlock(&a->lock);
}
snprintf(str, sizeof(str), "stub %sprime%s",
(z->noprime?"no":""), (insecure?" +i":""));
if(!ssl_print_name_dp(ssl, str, z->node.name,
z->node.dclass, z->dp))
return;
}
}
/** do the list_local_zones command */
static void
do_list_local_zones(SSL* ssl, struct worker* worker)
{
struct local_zones* zones = worker->daemon->local_zones;
struct local_zone* z;
char buf[257];
lock_rw_rdlock(&zones->lock);
RBTREE_FOR(z, struct local_zone*, &zones->ztree) {
lock_rw_rdlock(&z->lock);
dname_str(z->name, buf);
if(!ssl_printf(ssl, "%s %s\n", buf,
local_zone_type2str(z->type))) {
/* failure to print */
lock_rw_unlock(&z->lock);
lock_rw_unlock(&zones->lock);
return;
}
lock_rw_unlock(&z->lock);
}
lock_rw_unlock(&zones->lock);
}
/** do the list_local_data command */
static void
do_list_local_data(SSL* ssl, struct worker* worker)
{
struct local_zones* zones = worker->daemon->local_zones;
struct local_zone* z;
struct local_data* d;
struct local_rrset* p;
char* s = (char*)sldns_buffer_begin(worker->env.scratch_buffer);
size_t slen = sldns_buffer_capacity(worker->env.scratch_buffer);
lock_rw_rdlock(&zones->lock);
RBTREE_FOR(z, struct local_zone*, &zones->ztree) {
lock_rw_rdlock(&z->lock);
RBTREE_FOR(d, struct local_data*, &z->data) {
for(p = d->rrsets; p; p = p->next) {
struct packed_rrset_data* d =
(struct packed_rrset_data*)p->rrset->entry.data;
size_t i;
for(i=0; i<d->count + d->rrsig_count; i++) {
if(!packed_rr_to_string(p->rrset, i,
0, s, slen)) {
if(!ssl_printf(ssl, "BADRR\n")) {
lock_rw_unlock(&z->lock);
lock_rw_unlock(&zones->lock);
return;
}
}
if(!ssl_printf(ssl, "%s\n", s)) {
lock_rw_unlock(&z->lock);
lock_rw_unlock(&zones->lock);
return;
}
}
}
}
lock_rw_unlock(&z->lock);
}
lock_rw_unlock(&zones->lock);
}
/** struct for user arg ratelimit list */
struct ratelimit_list_arg {
/** the infra cache */
struct infra_cache* infra;
/** the SSL to print to */
SSL* ssl;
/** all or only ratelimited */
int all;
/** current time */
time_t now;
};
/** list items in the ratelimit table */
static void
rate_list(struct lruhash_entry* e, void* arg)
{
struct ratelimit_list_arg* a = (struct ratelimit_list_arg*)arg;
struct rate_key* k = (struct rate_key*)e->key;
struct rate_data* d = (struct rate_data*)e->data;
char buf[257];
int lim = infra_find_ratelimit(a->infra, k->name, k->namelen);
int max = infra_rate_max(d, a->now);
if(a->all == 0) {
if(max < lim)
return;
}
dname_str(k->name, buf);
ssl_printf(a->ssl, "%s %d limit %d\n", buf, max, lim);
}
/** do the ratelimit_list command */
static void
do_ratelimit_list(SSL* ssl, struct worker* worker, char* arg)
{
struct ratelimit_list_arg a;
a.all = 0;
a.infra = worker->env.infra_cache;
a.now = *worker->env.now;
a.ssl = ssl;
arg = skipwhite(arg);
if(strcmp(arg, "+a") == 0)
a.all = 1;
if(a.infra->domain_rates==NULL ||
(a.all == 0 && infra_dp_ratelimit == 0))
return;
slabhash_traverse(a.infra->domain_rates, 0, rate_list, &a);
}
/** tell other processes to execute the command */
static void
distribute_cmd(struct daemon_remote* rc, SSL* ssl, char* cmd)
{
int i;
if(!cmd || !ssl)
return;
/* skip i=0 which is me */
for(i=1; i<rc->worker->daemon->num; i++) {
worker_send_cmd(rc->worker->daemon->workers[i],
worker_cmd_remote);
if(!tube_write_msg(rc->worker->daemon->workers[i]->cmd,
(uint8_t*)cmd, strlen(cmd)+1, 0)) {
ssl_printf(ssl, "error could not distribute cmd\n");
return;
}
}
}
/** check for name with end-of-string, space or tab after it */
static int
cmdcmp(char* p, const char* cmd, size_t len)
{
return strncmp(p,cmd,len)==0 && (p[len]==0||p[len]==' '||p[len]=='\t');
}
/** execute a remote control command */
static void
execute_cmd(struct daemon_remote* rc, SSL* ssl, char* cmd,
struct worker* worker)
{
char* p = skipwhite(cmd);
/* compare command */
if(cmdcmp(p, "stop", 4)) {
do_stop(ssl, rc);
return;
} else if(cmdcmp(p, "reload", 6)) {
do_reload(ssl, rc);
return;
} else if(cmdcmp(p, "stats_noreset", 13)) {
do_stats(ssl, rc, 0);
return;
} else if(cmdcmp(p, "stats", 5)) {
do_stats(ssl, rc, 1);
return;
} else if(cmdcmp(p, "status", 6)) {
do_status(ssl, worker);
return;
} else if(cmdcmp(p, "dump_cache", 10)) {
(void)dump_cache(ssl, worker);
return;
} else if(cmdcmp(p, "load_cache", 10)) {
if(load_cache(ssl, worker)) send_ok(ssl);
return;
} else if(cmdcmp(p, "list_forwards", 13)) {
do_list_forwards(ssl, worker);
return;
} else if(cmdcmp(p, "list_stubs", 10)) {
do_list_stubs(ssl, worker);
return;
} else if(cmdcmp(p, "list_insecure", 13)) {
do_insecure_list(ssl, worker);
return;
} else if(cmdcmp(p, "list_local_zones", 16)) {
do_list_local_zones(ssl, worker);
return;
} else if(cmdcmp(p, "list_local_data", 15)) {
do_list_local_data(ssl, worker);
return;
} else if(cmdcmp(p, "ratelimit_list", 14)) {
do_ratelimit_list(ssl, worker, p+14);
return;
} else if(cmdcmp(p, "stub_add", 8)) {
/* must always distribute this cmd */
if(rc) distribute_cmd(rc, ssl, cmd);
do_stub_add(ssl, worker, skipwhite(p+8));
return;
} else if(cmdcmp(p, "stub_remove", 11)) {
/* must always distribute this cmd */
if(rc) distribute_cmd(rc, ssl, cmd);
do_stub_remove(ssl, worker, skipwhite(p+11));
return;
} else if(cmdcmp(p, "forward_add", 11)) {
/* must always distribute this cmd */
if(rc) distribute_cmd(rc, ssl, cmd);
do_forward_add(ssl, worker, skipwhite(p+11));
return;
} else if(cmdcmp(p, "forward_remove", 14)) {
/* must always distribute this cmd */
if(rc) distribute_cmd(rc, ssl, cmd);
do_forward_remove(ssl, worker, skipwhite(p+14));
return;
} else if(cmdcmp(p, "insecure_add", 12)) {
/* must always distribute this cmd */
if(rc) distribute_cmd(rc, ssl, cmd);
do_insecure_add(ssl, worker, skipwhite(p+12));
return;
} else if(cmdcmp(p, "insecure_remove", 15)) {
/* must always distribute this cmd */
if(rc) distribute_cmd(rc, ssl, cmd);
do_insecure_remove(ssl, worker, skipwhite(p+15));
return;
} else if(cmdcmp(p, "forward", 7)) {
/* must always distribute this cmd */
if(rc) distribute_cmd(rc, ssl, cmd);
do_forward(ssl, worker, skipwhite(p+7));
return;
} else if(cmdcmp(p, "flush_stats", 11)) {
/* must always distribute this cmd */
if(rc) distribute_cmd(rc, ssl, cmd);
do_flush_stats(ssl, worker);
return;
} else if(cmdcmp(p, "flush_requestlist", 17)) {
/* must always distribute this cmd */
if(rc) distribute_cmd(rc, ssl, cmd);
do_flush_requestlist(ssl, worker);
return;
} else if(cmdcmp(p, "lookup", 6)) {
do_lookup(ssl, worker, skipwhite(p+6));
return;
}
#ifdef THREADS_DISABLED
/* other processes must execute the command as well */
/* commands that should not be distributed, returned above. */
if(rc) { /* only if this thread is the master (rc) thread */
/* done before the code below, which may split the string */
distribute_cmd(rc, ssl, cmd);
}
#endif
if(cmdcmp(p, "verbosity", 9)) {
do_verbosity(ssl, skipwhite(p+9));
} else if(cmdcmp(p, "local_zone_remove", 17)) {
do_zone_remove(ssl, worker, skipwhite(p+17));
} else if(cmdcmp(p, "local_zone", 10)) {
do_zone_add(ssl, worker, skipwhite(p+10));
} else if(cmdcmp(p, "local_data_remove", 17)) {
do_data_remove(ssl, worker, skipwhite(p+17));
} else if(cmdcmp(p, "local_data", 10)) {
do_data_add(ssl, worker, skipwhite(p+10));
} else if(cmdcmp(p, "flush_zone", 10)) {
do_flush_zone(ssl, worker, skipwhite(p+10));
} else if(cmdcmp(p, "flush_type", 10)) {
do_flush_type(ssl, worker, skipwhite(p+10));
} else if(cmdcmp(p, "flush_infra", 11)) {
do_flush_infra(ssl, worker, skipwhite(p+11));
} else if(cmdcmp(p, "flush", 5)) {
do_flush_name(ssl, worker, skipwhite(p+5));
} else if(cmdcmp(p, "dump_requestlist", 16)) {
do_dump_requestlist(ssl, worker);
} else if(cmdcmp(p, "dump_infra", 10)) {
do_dump_infra(ssl, worker);
} else if(cmdcmp(p, "log_reopen", 10)) {
do_log_reopen(ssl, worker);
} else if(cmdcmp(p, "set_option", 10)) {
do_set_option(ssl, worker, skipwhite(p+10));
} else if(cmdcmp(p, "get_option", 10)) {
do_get_option(ssl, worker, skipwhite(p+10));
} else if(cmdcmp(p, "flush_bogus", 11)) {
do_flush_bogus(ssl, worker);
} else if(cmdcmp(p, "flush_negative", 14)) {
do_flush_negative(ssl, worker);
} else {
(void)ssl_printf(ssl, "error unknown command '%s'\n", p);
}
}
void
daemon_remote_exec(struct worker* worker)
{
/* read the cmd string */
uint8_t* msg = NULL;
uint32_t len = 0;
if(!tube_read_msg(worker->cmd, &msg, &len, 0)) {
log_err("daemon_remote_exec: tube_read_msg failed");
return;
}
verbose(VERB_ALGO, "remote exec distributed: %s", (char*)msg);
execute_cmd(NULL, NULL, (char*)msg, worker);
free(msg);
}
/** handle remote control request */
static void
handle_req(struct daemon_remote* rc, struct rc_state* s, SSL* ssl)
{
int r;
char pre[10];
char magic[7];
char buf[1024];
#ifdef USE_WINSOCK
/* makes it possible to set the socket blocking again. */
/* basically removes it from winsock_event ... */
WSAEventSelect(s->c->fd, NULL, 0);
#endif
fd_set_block(s->c->fd);
/* try to read magic UBCT[version]_space_ string */
ERR_clear_error();
if((r=SSL_read(ssl, magic, (int)sizeof(magic)-1)) <= 0) {
if(SSL_get_error(ssl, r) == SSL_ERROR_ZERO_RETURN)
return;
log_crypto_err("could not SSL_read");
return;
}
magic[6] = 0;
if( r != 6 || strncmp(magic, "UBCT", 4) != 0) {
verbose(VERB_QUERY, "control connection has bad magic string");
/* probably wrong tool connected, ignore it completely */
return;
}
/* read the command line */
if(!ssl_read_line(ssl, buf, sizeof(buf))) {
return;
}
snprintf(pre, sizeof(pre), "UBCT%d ", UNBOUND_CONTROL_VERSION);
if(strcmp(magic, pre) != 0) {
verbose(VERB_QUERY, "control connection had bad "
"version %s, cmd: %s", magic, buf);
ssl_printf(ssl, "error version mismatch\n");
return;
}
verbose(VERB_DETAIL, "control cmd: %s", buf);
/* figure out what to do */
execute_cmd(rc, ssl, buf, rc->worker);
}
int remote_control_callback(struct comm_point* c, void* arg, int err,
struct comm_reply* ATTR_UNUSED(rep))
{
struct rc_state* s = (struct rc_state*)arg;
struct daemon_remote* rc = s->rc;
int r;
if(err != NETEVENT_NOERROR) {
if(err==NETEVENT_TIMEOUT)
log_err("remote control timed out");
clean_point(rc, s);
return 0;
}
/* (continue to) setup the SSL connection */
ERR_clear_error();
r = SSL_do_handshake(s->ssl);
if(r != 1) {
int r2 = SSL_get_error(s->ssl, r);
if(r2 == SSL_ERROR_WANT_READ) {
if(s->shake_state == rc_hs_read) {
/* try again later */
return 0;
}
s->shake_state = rc_hs_read;
comm_point_listen_for_rw(c, 1, 0);
return 0;
} else if(r2 == SSL_ERROR_WANT_WRITE) {
if(s->shake_state == rc_hs_write) {
/* try again later */
return 0;
}
s->shake_state = rc_hs_write;
comm_point_listen_for_rw(c, 0, 1);
return 0;
} else {
if(r == 0)
log_err("remote control connection closed prematurely");
log_addr(1, "failed connection from",
&s->c->repinfo.addr, s->c->repinfo.addrlen);
log_crypto_err("remote control failed ssl");
clean_point(rc, s);
return 0;
}
}
s->shake_state = rc_none;
/* once handshake has completed, check authentication */
if (!rc->use_cert) {
verbose(VERB_ALGO, "unauthenticated remote control connection");
} else if(SSL_get_verify_result(s->ssl) == X509_V_OK) {
X509* x = SSL_get_peer_certificate(s->ssl);
if(!x) {
verbose(VERB_DETAIL, "remote control connection "
"provided no client certificate");
clean_point(rc, s);
return 0;
}
verbose(VERB_ALGO, "remote control connection authenticated");
X509_free(x);
} else {
verbose(VERB_DETAIL, "remote control connection failed to "
"authenticate with client certificate");
clean_point(rc, s);
return 0;
}
/* if OK start to actually handle the request */
handle_req(rc, s, s->ssl);
verbose(VERB_ALGO, "remote control operation completed");
clean_point(rc, s);
return 0;
}